Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 10 năm 2023 - 2024 trường THPT Bình Chiểu - TP HCM

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán 10 năm học 2023 – 2024 trường THPT Bình Chiểu, thành phố Hồ Chí Minh; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 10 năm 2023 – 2024 trường THPT Bình Chiểu – TP HCM : + Năm bạn Anh, Bình, Cúc, Dũng, Đức về quê ở năm tỉnh: Bắc Ninh, Hà Nội, Cần Thơ, Nghệ An và Tiền Giang. Khi được hỏi quê ở tỉnh nào, các bạn trả lời như sau: Anh: Tôi quê ở Bắc Ninh, còn Dũng ở Nghệ An. Bình: Tôi cũng quê ở Bắc Ninh, còn Cúc quê ở Tiền Giang. Cúc: Tôi cũng quê ở Bắc Ninh, còn Dũng quê ở Hà Nội. Dũng: Tôi quê ở Nghệ An, còn Đức ở Cần Thơ. Đức: Tôi quê ở Cần Thơ, còn Anh ở Hà Nội. Nếu không bạn nào trả lời sai hoàn toàn thì quê của mỗi bạn ở tỉnh nào? + Một công ty TNHH trong một đợt quảng cáo và bán khuyến mãi hàng hoá (một sản phẩm mới của công ty) cần thuê xe để chở 140 người và 9 tấn hàng. Nơi thuê chỉ có hai loại xe A và B. Trong đó xe loại A có 10 chiếc , xe loại B có 9 chiếc. Một chiếc xe loại A cho thuê với giá 4 triệu, loại B giá 3 triệu. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí vận chuyển là thấp nhất. Biết rằng xe A chỉ chở tối đa 20 người và 0,6 tấn hàng; xe B chở tối đa 10 người và 1,5 tấn hàng. + Một cái cổng hình parabol như hình vẽ. Chiều cao GH m 4 chiều rộng AB m 4 AC BD m 0,9. Chủ nhà làm hai cánh cổng khi đóng lại là hình chữ nhật CDEF tô đậm có giá 1 200 000 đồng/m2, còn các phần để trắng làm xiên hoa có giá là 900 000 đồng/m2. Biết diện tích của cái cổng là 32 3 m2. Hỏi tổng chi phí để làm cái cổng là bao nhiêu? (Làm tròn đến hàng trăm nghìn).

Nguồn: toanmath.com

Đọc Sách

Đề thi Olympic lớp 10 môn Toán năm 2018 2019 trường THPT Kim Liên Hà Nội
Nội dung Đề thi Olympic lớp 10 môn Toán năm 2018 2019 trường THPT Kim Liên Hà Nội Bản PDF - Nội dung bài viết Đề thi Olympic Toán lớp 10 năm 2018 - 2019 trường THPT Kim Liên Hà Nội Đề thi Olympic Toán lớp 10 năm 2018 - 2019 trường THPT Kim Liên Hà Nội Sytu xin gửi đến thầy, cô và các em học sinh khối 10 nội dung đề thi Olympic Toán lớp 10 năm 2018 - 2019 trường THPT Kim Liên - Hà Nội. Đề thi bao gồm 01 trang với 05 bài toán tự luận, học sinh có thời gian làm bài trong 150 phút (không tính thời gian giám thị coi thi phát đề). Đề thi được kèm theo lời giải chi tiết. Trích đề thi Olympic Toán lớp 10 năm 2018 - 2019 trường THPT Kim Liên - Hà Nội: 1. Một cầu treo có dây truyền đỡ theo dạng Parabol ACB. Đầu và cuối của dây được gắn vào các điểm A, B trên mỗi trục AA′ và BB′ với độ cao 30 m. Chiều dài đoạn A'B' trên nền cầu bằng 200 m. Độ cao ngắn nhất của dây truyền trên cầu là CC' = 5 m. Tính tổng độ dài của các dây cáp treo. 2. Cho tam giác ABC và một điểm M bất kỳ, với BC = a, CA = b, AB = c. a) Chứng minh rằng (b^2 - c^2)cosA = a(c.cosC - b.cosB). b) Tìm tập hợp các điểm M sao cho MB^2 + MC^2 = MA^2. 3. Trong mặt phẳng với hệ tọa độ Oxy, cho A(3;1), B(-1;2). a) Tìm tọa độ điểm N trên trục hoành Ox sao cho khoảng cách AN nhỏ nhất. b) Cho điểm M di động trên đường thẳng d: y = x. Đường thẳng MA cắt trục hoành tại P và đường thẳng MB cắt trục tung tại Q. Chứng minh đường thẳng PQ luôn đi qua một điểm cố định.
Đề thi HSG lớp 10 môn Toán năm 2018 2019 trường THPT Nam Tiền Hải Thái Bình
Nội dung Đề thi HSG lớp 10 môn Toán năm 2018 2019 trường THPT Nam Tiền Hải Thái Bình Bản PDF - Nội dung bài viết Đề thi HSG lớp 10 Toán năm 2018-2019 trường THPT Nam Tiền Hải Thái Bình Đề thi HSG lớp 10 Toán năm 2018-2019 trường THPT Nam Tiền Hải Thái Bình Đề thi HSG Toán lớp 10 năm 2018 - 2019 trường THPT Nam Tiền Hải - Thái Bình được thiết kế theo định dạng tự luận, bao gồm 01 trang với 05 bài toán khó. Học sinh được cấp 180 phút để hoàn thành bài thi, với ngày thi diễn ra vào ngày 06 tháng 03 năm 2019. Dưới đây là một số câu hỏi trích dẫn từ đề thi HSG Toán lớp 10 năm 2018 - 2019 trường THPT Nam Tiền Hải - Thái Bình: 1. Trong hệ trục tọa độ Oxy, hãy tìm phương trình của đường cao AD và phân giác trong CE của tam giác ABC với A(4;-1), B(1;5), C(-4;-5). 2. Với B(0;1), C(3;0), đường phân giác trong góc BAC của tam giác ABC cắt trục Oy tại M(0;-7/3), chia tam giác thành hai phần có tỉ lệ diện tích 10/11 (với phần chứa điểm B có diện tích nhỏ hơn phần chứa điểm C). Hãy tính T = a^2 + b^2 với A(a;b) và a < 0. 3. Hãy chứng minh rằng: a.sinA + b.sinB + c.sinC = 2(ma^2 + mb^2 + mc^2)/3R với mọi tam giác ABC (a = BC, b = AC, c = AB; ma, mb, mc lần lượt là độ dài đường trung tuyến hạ từ A, B, C; R bán kính đường tròn ngoại tiếp tam giác ABC). Đề thi này tập trung vào việc áp dụng các kiến thức về hình học và tính toán trong giải quyết các bài toán phức tạp, đòi hỏi học sinh phải có kiến thức chắc chắn và khả năng suy luận logic tốt. Qua đó, đề thi giúp học sinh phát triển kỹ năng tư duy, khả năng giải quyết vấn đề và xử lý tình huống.
Đề thi học sinh giỏi lớp 10 môn Toán năm 2018 2019 trường Đan Phượng Hà Nội
Nội dung Đề thi học sinh giỏi lớp 10 môn Toán năm 2018 2019 trường Đan Phượng Hà Nội Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 10 năm 2018 - 2019 trường Đan Phượng Hà Nội Đề thi học sinh giỏi Toán lớp 10 năm 2018 - 2019 trường Đan Phượng Hà Nội Sytu xin giới thiệu đến các bạn nội dung đề thi học sinh giỏi môn Toán lớp 10 năm 2018 - 2019 của trường Đan Phượng - Hà Nội. Đề thi được tổ chức nhằm tuyển chọn những học sinh xuất sắc khối lớp 10 với kiến thức Toán để bổ sung vào đội tuyển học sinh giỏi Toán của trường. Đề thi Toán lớp 10 năm 2018 - 2019 tại trường Đan Phượng - Hà Nội có cấu trúc bao gồm 5 bài toán được biên soạn theo hình thức tự luận, nhằm đánh giá khả năng tư duy logic và giải quyết vấn đề của học sinh. Thang điểm của đề thi là 20 và thời gian làm bài là 120 phút. Các em sẽ được tuyên dương, khen thưởng trước toàn trường nếu đạt kết quả cao. Trích dẫn một số câu hỏi trong đề thi: 1. Trong mặt phẳng tọa độ Oxy, cho hình thang ABCD với diện tích bằng 14 đơn vị diện tích và các điểm đặc biệt A(1;1), H(-1/2;0). Viết phương trình tổng quát của đường thẳng AB biết điểm D có hoành độ dương và nằm trên đường thẳng d: 5x – y + 1 = 0. 2. Cho parabol (P): y = 2x^2 + 6x - 1. Tìm giá trị của k để đường thẳng Δ: y = (k + 6)x + 1 cắt parabol (P) tại hai điểm phân biệt M, N sao cho trung điểm của MN nằm trên đường thẳng d: y = -2x + 3/2. 3. Tam giác ABC là tam giác đều có cạnh bằng a. Lấy các điểm N, M, P trên các cạnh sao cho BN = a/3, CM = 2a/3, AP = x (0 < x < a). Tìm giá trị của x để đường thẳng AN vuông góc với đường thẳng PM. Đề thi còn nhiều câu hỏi khác thú vị và thách thức đòi hỏi các em phải áp dụng kiến thức, kỹ năng Toán một cách linh hoạt và sáng tạo.