Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán nhị thức Newton và các bài toán liên quan

Tài liệu gồm 39 trang được tổng hợp và biên soạn bởi thầy Nguyễn Bảo Vương, tuyển tập 126 câu hỏi và bài tập trắc nghiệm nhị thức Newton (Niu-tơn) và các bài toán liên quan, có đáp án và lời giải chi tiết, giúp học sinh học tốt bài 3 chương 2 Đại số và Giải tích 11. Mục lục tài liệu các dạng toán nhị thức Newton và các bài toán liên quan: Phần A . CÂU HỎI Dạng 1. Tiếp cận với khai triển nhị thức Newton (Trang 2). Dạng 2. Tìm hệ số, số hạng trong khai triển nhị thức Newton (Trang 3). Dạng 2.1 Khai triển của 1 biểu thức (Trang 3). Dạng 2.1.1 Bài toán tìm hệ số của số hạng (Trang 3). Dạng 2.1.2 Bài toán tìm số hạng thứ k (Trang 4). Dạng 2.1.3 Bài toán tìm hệ số, số hạng trong khai triển nhị thức có thêm điều kiện (Trang 5). Dạng 2.1.4 Số hạng không chứa x (số hạng độc lập) (Trang 8). Dạng 2.2 Khai triển của nhiều biểu thức (Trang 11). Dạng 2.2.1 Dạng ${\left( {{a_1} + {a_2} + \ldots {a_k}} \right)^n}$ (Trang 11). Dạng 2.2.2 Tổng ${\left( {{a_1} + {b_1}} \right)^n} + {\left( {{a_2} + {b_2}} \right)^m} + \ldots + {\left( {{a_k} + {b_k}} \right)^h}$ (Trang 12). Dạng 2.2.3 Tích ${\left( {{a_1} + \ldots + {a_n}} \right)^m}.{\left( {{b_1} + \ldots + {b_n}} \right)^l}$ (Trang 12). Dạng 2.2.4 Dạng kết hợp tích và tổng (Trang 13). Dạng 3. Ứng dụng nhị thức Newton để giải toán (Trang 13). [ads] Phần B . LỜI GIẢI THAM KHẢO Dạng 1. Tiếp cận với khai triển nhị thức Newton (Trang 14). Dạng 2. Tìm hệ số, số hạng trong khai triển nhị thức Newton (Trang 16). Dạng 2.1 Khai triển của 1 biểu thức (Trang 16). Dạng 2.1.1 Bài toán tìm hệ số của số hạng (Trang 16). Dạng 2.1.2 Bài toán tìm số hạng thứ k (Trang 18). Dạng 2.1.3 Bài toán tìm hệ số, số hạng trong khai triển nhị thức có thêm điều kiện n (Trang 20). Dạng 2.1.4 Số hạng không chứa x (số hạng độc lập) (Trang 27). Dạng 2.2 Khai triển của nhiều biểu thức (Trang 31). Dạng 2.2.1 Dạng ${\left( {{a_1} + {a_2} + \ldots {a_k}} \right)^n}$ (Trang 31). Dạng 2.2.2 Tổng ${\left( {{a_1} + {b_1}} \right)^n} + {\left( {{a_2} + {b_2}} \right)^m} + \ldots + {\left( {{a_k} + {b_k}} \right)^h}$ (Trang 33). Dạng 2.2.3 Tích ${\left( {{a_1} + \ldots + {a_n}} \right)^m}.{\left( {{b_1} + \ldots + {b_n}} \right)^l}$ (Trang 35). Dạng 2.2.4 Dạng kết hợp tích và tổng . (Trang 35). Dạng 3. Ứng dụng nhị thức Newton để giải toán (Trang 36). Xem thêm : Các dạng toán quy tắc đếm, hoán vị, chỉnh hợp, tổ hợp thường gặp

Nguồn: toanmath.com

Đọc Sách

Chuyên đề tự luận và trắc nghiệm tổ hợp và xác suất - Lư Sĩ Pháp
giới thiệu đến bạn đọc tài liệu chuyên đề tự luận và trắc nghiệm tổ hợp và xác suất do thầy Lư Sĩ Pháp biên soạn, tài liệu gồm 75 trang với nội dung bám sát chương trình Đại số và Giải tích 11 chương 2. Tài gồm 4 phần : Phần 1 . Kiến thức cần nắm: Hệ thống hóa lại các kiến thức trọng tâm về tổ hợp và xác suất trong SGK Đại số và Giải tích 11 chương 2. Phần 2 . Dạng bài tập có hướng dẫn giải và bài tập đề nghị: Phân dạng và tuyển chọn các bài tập tự luận đặc sắc với nhiều biến dạng khác nhau, kèm với đó là lời giải chi tiết nhằm giúp các em học sinh nắm được phương pháp và kỹ năng giải toán. Phần 3 . Phần trắc nghiệm có đáp án: Tuyển tập câu hỏi và bài tập trắc nghiệm chủ đề tổ hợp và xác suất, phù hợp với định hướng thi trắc nghiệm, đồng thời phục vụ cho quá trình ôn thi THPT Quốc gia môn Toán của học sinh khối 12. Phần 4 . Một số đề ôn kiểm tra: Tuyển chọn các đề kiểm tra Đại số và Giải tích 11 chương 2 có đáp án và hướng dẫn giải giúp học sinh đánh giá lại các kiến thức đã nắm được, các phần kiến thức cần cải thiện.
Các bài toán đếm - xác suất hay và khó
Tài liệu gồm 58 trang trình bày phương pháp giải một số bài toán đếm – xác suất hay và khó trong chương trình Đại số và Giải tích 11 chương 2, tài liệu được biên soạn bởi các thành viên nhóm Chinh phục Olympic Toán. Tóm tắt nội dung tài liệu : I. Hai bài toán tính xác suất có nhiều ứng dụng 1. Bài toán chia kẹo Euler: Bài toán chia kẹo của Euler là bài toán nổi tiếng trong lý thuyết tổ hợp. Với những học sinh chuyên toán cấp 3 thì đây là bài toán quen thuộc và có nhiều ứng dụng. 2. Bài toán đếm hình học II. Các bài toán tổng hợp Tuyển chọn 95 bài toán đếm – xác suất hay và khó có lời giải chi tiết.
Trắc nghiệm nâng cao tổ hợp và xác suất - Đặng Việt Đông
Tài liệu trắc nghiệm nâng cao tổ hợp và xác suất do thầy Đặng Việt Đông biên soạn tuyển tập các câu hỏi và bài tập trắc nghiệm vận dụng cao chủ đề tổ hợp và xác suất có đáp án và lời giải chi tiết trong chương trình Đại số và Giải tích 11 chương 2, các câu hỏi trong tài liệu có mức độ khó cao, được trích dẫn từ các đề thi thử môn Toán nhằm giúp học sinh ôn luyện chuẩn bị cho kỳ thi THPT Quốc gia.
Chuyên đề tổ hợp - xác suất - Bùi Trần Duy Tuấn
giới thiệu đến bạn đọc tài liệu chuyên đề tổ hợp – xác suất do thầy Bùi Trần Duy Tuấn biên soạn, tài liệu gồm 180 trang bao gồm kiến thức cơ bản, phân dạng toán, ví dụ minh họa và tuyển chọn các bài tập trắc nghiệm có lời giải chi tiết các chủ đề quy tắc đếm, hoán vị – chỉnh hợp – tổ hợp, tính toán liên quan đến các công thức, nhị thức NewTơn, biến cố và xác suất của biến cố trong chương trình Đại số và Giải tích 11 chương 2. Tài liệu thích hợp với học sinh khối 11 trong quá trình tự học chương tổ hợp – xác suất và học sinh khối 12 nhằm ôn tập lại các kiến thức tổ hợp – xác suất đã học để chuẩn bị cho kỳ thi THPT Quốc gia. CHỦ ĐỀ 1 : QUY TẮC ĐẾM A. Kiến thức cơ bản cần nắm 1. Quy tắc cộng 2. Quy tắc nhân 3. Các bài toán đếm cơ bản B. Một số bài toán minh họa C. Bài tập trắc nghiệm CHỦ ĐỀ 2 : HOÁN VỊ – CHỈNH HỢP – TỔ HỢP A. Kiến thức cơ bản cần nắm 1. Hoán vị 2. Chỉnh hợp 3. Tổ hợp B. Một số bài toán điển hình C. Bài tập trắc nghiệm + Dạng 1. Bài toán đếm + Dạng 2. Xếp vị trí – cách chọn, phân công công việc + Dạng 3. Đếm tổ hợp liên quan đến hình học CHỦ ĐỀ 3 : TÍNH TOÁN LIÊN QUAN ĐẾN CÁC CÔNG THỨC A. Nhắc lại các công thức B. Bài tập trắc nghiệm [ads] CHỦ ĐỀ 4 : NHỊ THỨC NEWTƠN A. Kiến thức cần nắm 1. Công thức nhị thức Newtơn 2. Tam giác Pascal B. Các dạng toán liên quan đến nhị thức Newtơn 1. Xác định các hệ số trong khai triển nhị thức Newtơn a. Tìm hệ số của số hạng chứa x^m trong khai triển (ax^p + bx^q)^n b. Xác định hệ số lớn nhất trong khai triển nhị thức Niutơn c. Xác định hệ số của số hạng trong khai triển P(x) = (ax^t + bx^p + cx^q)^n 2. Các bài toán tìm tổng a. Thuần nhị thức Newton b. Sử dụng đạo hàm cấp 1, cấp 2 c. Sử dụng tích phân C. Bài tập trắc nghiệm + Dạng 1. Xác định các hệ số, số hạng trong khai triển nhị thức Newton + Dạng 2. Các bài toán tìm tổng CHỦ ĐỀ 5 : BIẾN CỐ VÀ XÁC SUẤT CỦA BIẾN CỐ A. Kiến thức cần nắm 1. Phép thử ngẫu nhiên và không gian mẫu 2. Biến cố 3. Xác suất của biến cố B. Các dạng toán về xác suất 1. Sử dụng định nghĩa cổ điển về xác xuất – quy về bài toán đếm a. Bài toán tính xác suất sử dụng định nghĩa cổ điển bằng cách tính trực tiếp số phần tử thuận lợi cho biến cố b. Tính xác suất sử dụng định nghĩa cổ điển bằng phương pháp gián tiếp 2. Sử dụng quy tắc tính xác suất a. Phương pháp b. Một số bài toán minh họa C. Bài tập trắc nghiệm + Dạng 1. Xác định phép thử, không gian mẫu và biến cố + Dạng 2. Tìm xác suất của biến cố + Dạng 3. Các quy tắc tính xác suất