Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát đội tuyển HSGQG Toán năm 2022 2023 chuyên Lê Quý Đôn Điện Biên

Nội dung Đề khảo sát đội tuyển HSGQG Toán năm 2022 2023 chuyên Lê Quý Đôn Điện Biên Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi khảo sát đội dự tuyển học sinh giỏi Quốc gia môn Toán năm học 2022 – 2023 trường THPT chuyên Lê Quý Đôn, tỉnh Điện Biên; kỳ thi được diễn ra vào thứ Sáu ngày 26 tháng 08 năm 2022. Trích dẫn đề khảo sát đội tuyển HSGQG Toán năm 2022 – 2023 chuyên Lê Quý Đôn – Điện Biên : + Cho tam giác nhọn ABC không cân tại A, có trực tâm H. Từ B kẻ đường thẳng vuông góc với AC, cắt đường tròn đường kính AC tại hai điểm D và E (D nằm giữa E và B) đồng thời cắt đường thẳng AC tại K. Từ C kẻ đường thẳng vuông góc với AB, cắt đường tròn đường kính AB tại hai điểm F và G (F nằm giữa C và G) đồng thời cắt đường thẳng AB tại L. a) Chứng minh rằng bốn điểm D, F, E, G cùng nằm trên một đường tròn. b) Giả sử KL giao BC tại I. Từ B kẻ đường thẳng vuông góc với AI và cắt đường thẳng LC tại J. Chứng minh rằng H là trung điểm đoạn thẳng CJ. + Cho 2022 số nguyên dương a1, a2, …, a2022 bất kỳ. Có tồn tại hay không vô hạn số nguyên dương n >= 2022 thỏa mãn dãy 2022 số đều là hợp số không? + Cho bảng ô vuông kích thước 100×100 mà mỗi ô được điền một trong các ký tự A, B, C, D sao cho trên mỗi hàng, mỗi cột của bảng thì số lượng ký tự từng loại đúng bằng 25. Ta gọi hai ô thuộc cùng hàng (không nhất thiết kề nhau) nhưng được điền khác ký tự là “cặp tốt”, còn hình chữ nhật có các cạnh song song với bảng và bốn đỉnh của nó được điền đủ bốn ký tự A, B, C, D là “bảng tốt”. a) Hỏi trong các cách điền ở trên, có bao nhiêu cách điền mà mỗi bảng ô vuông 1×4, 4×1 và 2×2 đều có chứa đủ các ký tự A, B, C, D? b) Chứng minh rằng với mọi cách điền thỏa mãn đề bài thì trên bảng ô vuông đã cho: i) Luôn có 2 cột của bảng mà từ đó có thể chọn ra được 76 cặp tốt. ii) Luôn có một bảng tốt.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi Quốc gia môn Toán THPT năm học 2022 2023
Nội dung Đề thi chọn học sinh giỏi Quốc gia môn Toán THPT năm học 2022 2023 Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Quốc gia môn Toán Trung học Phổ thông năm học 2022 – 2023; kỳ thi được diễn ra vào các ngày 24 và 25 tháng 02 năm 2023. Trích dẫn đề thi chọn học sinh giỏi Quốc gia môn Toán THPT năm học 2022 – 2023 : + Xét dãy số (an) thỏa mãn với mọi n ≥ 1. a) Chứng minh rằng dãy (an) xác định duy nhất và có giới hạn hữu hạn. b) Cho dãy số (bn) xác định bởi bn với mọi n ≥ 1. Chứng minh rằng dãy (bn) có giới hạn hữu hạn. + Cho các số nguyên a, b, c, alpha, beta và dãy số (un) xác định bởi với mọi n ≥ 1. a) Chứng minh rằng nếu a = 3, b = -2, c = -1 thì có vô số cặp số nguyên (alpha;beta) để u2023 = 2^2022. b) Chứng minh rằng tồn tại số nguyên dương n sao cho có duy nhất một trong hai khẳng định sau là đúng: i) Có vô số số nguyên dương m để chia hết cho 7^2023 hoặc 17^2023. ii) Có vô số số nguyên dương k để chia hết cho 2023. + Cho tứ giác ABCD có DB = DC và nội tiếp một đường tròn. Gọi M, N tương ứng là trung điểm của AB, AC và J, E, F tương ứng là các tiếp điểm của đường tròn (I) nội tiếp tam giác ABC với BC, CA, AB. Đường thẳng MN cắt JE, JF lần lượt tại K, H; IJ cắt lại đường tròn (IBC) tại G và DG cắt lại (IBC) tại T. a) Chứng minh rằng JA đi qua trung điểm của HK và vuông góc với IT. b) Gọi R, S tương ứng là hình chiếu vuông góc của D trên AB, AC. Lấy các điểm P, Q lần lượt trên IF, IE sao cho KP và HQ đều vuông góc với MN. Chứng minh rằng ba đường thẳng MP, NQ và RS đồng quy.
Đề thi học sinh giỏi lớp 12 môn Toán năm 2022 2023 sở GD ĐT Đà Nẵng
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán năm 2022 2023 sở GD ĐT Đà Nẵng Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán lớp 12 cấp thành phố năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Đà Nẵng; đề thi hình thức trắc nghiệm, gồm 04 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, có đáp án mã đề 163 – 116 – 122 – 148. Trích dẫn Đề thi học sinh giỏi Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Đà Nẵng : + Trong mặt phẳng Oxy, gọi S là tập hợp tất cả các giá trị nguyên của tham số a sao cho không tồn tại đường thẳng nào đi qua điểm M a 0 đồng thời cắt đồ thị hàm số 2 1 1 x y x tại hai điểm phân biệt đối xứng nhau qua M. Số phần tử của S bằng? + Cho đa giác đều (H) 90 đỉnh nội tiếp trong đường tròn bán kính bằng 1. Có bao nhiêu đa giác lồi 45 đỉnh cũng là các đỉnh của (H) mà khoảng cách giữa hai đỉnh bất kỳ của đa giác này khác 1? + Với mỗi số thực x ký hiệu x là số nguyên lớn nhất không vượt quá x. Có bao nhiêu giá trị nguyên âm của tham số a để phương trình 1 3 4 ln 1 2 x a x có nghiệm thực x thuộc (1;14)?
Đề thi chọn HSG cấp tỉnh lớp 12 môn Toán năm 2022 2023 sở GD ĐT Quảng Ngãi
Nội dung Đề thi chọn HSG cấp tỉnh lớp 12 môn Toán năm 2022 2023 sở GD ĐT Quảng Ngãi Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 hệ THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Ngãi; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào ngày 09 tháng 02 năm 2023. Trích dẫn Đề thi chọn HSG cấp tỉnh Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Quảng Ngãi : + Cho hình hộp đứng ABCD A B C D có đáy ABCD là hình thoi cạnh 2a, góc BAD 120 và khoảng cách từ B đến đường thẳng B D bằng a 3. Tính thể tích khối hộp đã cho. + Cho tứ diện ABCD. Hai điểm E, F lần lượt di động trên hai đoạn thẳng BC, BD sao cho E không trùng với B, C; F không trùng với B, D và 2 3 10 BC BF BD BE BE BF. Gọi V, V’ lần lượt là thể tích của các khối tứ diện ABCD, ABEF. Tìm giá trị nhỏ nhất của tỉ số V V. + Cho tập hợp X = {0;1;2;3;4;5;6;7}. Gọi S là tập hợp các số tự nhiên lẻ có bốn chữ số đôi một khác nhau được lập từ các chữ số thuộc tập X. Chọn ngẫu nhiên một số từ tập S. Tính xác suất để số được chọn nhỏ hơn 2023.
Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2022 2023 sở GD ĐT Phú Thọ
Nội dung Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2022 2023 sở GD ĐT Phú Thọ Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Phú Thọ; đề thi được biên soạn theo hình thức 40% tự luận kết hợp 60% trắc nghiệm, phần tự luận gồm 04 câu (08 điểm), phần trắc nghiệm gồm 40 câu (12 điểm), thời gian làm bài 180 phút. Trích dẫn Đề thi học sinh giỏi cấp tỉnh Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Phú Thọ : + Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x3 – (m + 1)x + 4 − m cắt trục hoành tại ba điểm phân biệt có hoành độ lớn hơn -3. Cho x, y là hai số thực dương, tìm giá trị lớn nhất của biểu thức P. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 2a, AD = 2a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M là trung điểm cạnh AD. Tính khoảng cách từ điểm B đến mặt phẳng (SCM). Cho hình lăng trụ ABCD.A’B’C’D’ có đáy ABCD là hình chữ nhật, AB = 6, AD = 3, A’C = 3 và mặt phẳng (ACC’A’) vuông góc với mặt phẳng đáy. Biết góc giữa hai mặt phẳng (ACC’A’) và (ADD’A’) là a thỏa mãn tana = 3/2. Tính thể tích của khối lăng trụ ABCD.A’B’C’D’. + Hai bạn Quý và Mão mỗi bạn chọn ngẫu nhiên một tập con khác rỗng từ tập E = {1; 2; 3; 4; 5; 6; 7; 8; 9}. Tính xác suất để mỗi bạn chọn được một tập con có 3 phần tử và trong hai tập con đó có ít nhất hai phần tử giống nhau.