Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các bài toán chọn lọc trong hệ tọa độ Oxyz (phần 1) - Nguyễn Xuân Chung

Tài liệu gồm 112 trang, được biên soạn bởi thầy giáo Nguyễn Xuân Chung, tuyển chọn và hướng dẫn phương pháp giải các bài toán chọn lọc trong hệ tọa độ Oxyz (phần 1), giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian. PHẦN 1 : KIẾN THỨC CƠ BẢN VÀ BỔ XUNG. CÔNG THỨC TÍNH NHANH. Trong phần này chúng ta nghiên cứu các bài toán điển hình trong hệ tọa độ Oxyz chỉ thiên về tính toán: Nghĩa là từ các số liệu và dữ kiện đã cho, chúng ta đi thiết lập các phương trình hay các hệ thức có liên quan và giải ra đáp số cần tìm. Phần này là các bài toán sưu tầm được chọn lọc và có tính tổng hợp, nghĩa là tổ hợp của nhiều bài toán nhỏ, bao gồm nhiều kiến thức có liên quan. Nói cách khác: Đây là các bài toán để ôn tập và luyện thi. Chúng ta có thể phân dạng, loại toán theo nhiều cách hay theo các hình thức nào đó, một bài toán có thể được nằm trong nhiều dạng toán khác nhau, do đó không thể định dạng chung cho tất cả các bài toán. Trong phần này tôi cố gắng biên soạn các bài toán theo các chủ đề, hay theo phương pháp giải hoặc theo dạng toán đặc trưng của nó. Để đáp ứng ôn tập và luyện thi, đặc biệt là thi trắc nghiệm, thì ngoài các kiến thức cơ bản và cách giải tự luận, yêu cầu các em cần bổ xung thêm các kiến thức, một số kết quả hay một số công thức tính nhanh, kết hợp với máy tính CASIO. I. CÁC BÀI TOÁN CƠ BẢN VỀ VÉC TƠ VÀ TỌA ĐỘ. II. CÁC BÀI TOÁN CƠ BẢN VỀ MẶT CẦU. III. CÁC BÀI TOÁN CƠ BẢN VỀ MẶT PHẲNG. IV. MẶT PHẲNG THEO ĐOẠN CHẮN VÀ ỨNG DỤNG. V. MẶT PHẲNG TRUNG TRỰC – PHÉP CHIẾU VUÔNG GÓC VÀ ỨNG DỤNG. VI. BÀI TOÁN CƠ BẢN VỀ ĐƯỜNG THẲNG TRONG KHÔNG GIAN. VII. HÌNH CHIẾU VUÔNG GÓC CỦA ĐIỂM LÊN ĐƯỜNG THẲNG. VIII. BÀI TẬP TỔNG HỢP CUỐI PHẦN 1. IX. PHỤ LỤC: PHÂN TÍCH MỘT SỐ DẠNG TOÁN VÀ PHƯƠNG PHÁP GIẢI.

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm phương trình mặt cầu
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình mặt cầu, một chủ đề rất quan trọng trong chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian. Bên cạnh tài liệu phương trình mặt cầu dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. [ads] Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình mặt cầu: A. KIẾN THỨC CƠ BẢN 1/ Định nghĩa 2/ Phương trình mặt cầu + Dạng 1: Phương trình mặt cầu dạng chính tắc. + Dạng 2: Phương trình mặt cầu dạng tổng quát. 3/ Vị trí tương đối giữa mặt cầu và mặt phẳng 4/ Vị trí tương đối giữa mặt cầu và đường thẳng 5/ Điều kiện tiếp xúc B. KỸ NĂNG CƠ BẢN Dạng 1 : VIẾT PHƯƠNG TRÌNH MẶT CẦU. Thuật toán 1: + Bước 1: Xác định tâm I(a;b;c). + Bước 2: Xác định bán kính R của (S). + Bước 3: Mặt cầu (S) có tâm I(a;b;c) và bán kính R có phương trình: (S): (x – a)^2 + (y – b)^2 + (z – c)^2 = R^2. Thuật toán 2: Gọi phương trình mặt cầu (S): x^2 + y^2 + z^2 – 2ax – 2by – 2cz + d = 0 với a^2 + b^2 + c^2 – d > 0. Phương trình (S) hoàn toàn xác định nếu biết được a, b, c, d. Dạng 2 : SỰ TƯƠNG GIAO VÀ SỰ TIẾP XÚC. + Đường thẳng ∆ là tiếp tuyến của (S) ⇔ d(I;∆) = R. + Mặt phẳng (α) là tiếp diện của (S) ⇔ d(I;(α)) = R.
Tóm tắt lý thuyết và bài tập trắc nghiệm phương trình mặt phẳng
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình mặt phẳng, một chủ đề rất quan trọng trong chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian. Bên cạnh tài liệu phương trình mặt phẳng dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. [ads] Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình mặt phẳng: A. TỔNG HỢP LÝ THUYẾT Dạng 1: Viết phương trình mặt phẳng khi biết một điểm và vectơ pháp tuyến của nó. Dạng 2: Viết phương trình mặt phẳng (α) đi qua một điểm M(x0;y0;z0) và song song với một mặt phẳng (β): Ax + By + Cz + D = 0 cho trước. Dạng 3: Viết phương trình mặt phẳng (α) đi qua 3 điểm A, B, C không thẳng hàng. Dạng 4: Viết phương trình mặt phẳng (α) đi qua điểm M và vuông góc với đường thẳng ∆. Dạng 5: Viết phương trình mặt phẳng (α) chứa đường thẳng ∆, vuông góc với mặt phẳng (β). Dạng 6: Viết phương trình mặt phẳng (α) qua hai điểm A, B và vuông góc với mặt phẳng (β). Dạng 7: Viết phương trình mặt phẳng (α) chứa đường thẳng ∆ và song song với ∆′ (∆, ∆′ chéo nhau). Dạng 8: Viết phương trình mặt phẳng (α) chứa đường thẳng ∆ và điểm M. Dạng 9: Viết phương trình mặt phẳng (α) chứa 2 đường thẳng cắt nhau ∆ và ∆′. Dạng 10: Viết phương trình mặt phẳng (α) chứa 2 đường thẳng song song ∆ và ∆′. Dạng 11: Viết phương trình mặt phẳng (α) đi qua một điểm M và song song với hai đường thẳng ∆ và ∆′ chéo nhau cho trước. Dạng 12: Viết phương trình mặt phẳng (α) đi qua một điểm M và vuông góc với hai mặt phẳng (P) và (Q) cho trước. Dạng 13: Viết phương trình mặt phẳng (α) song song với mặt phẳng (β) và cách (β) một khoảng k cho trước. Dạng 14: Viết phương trình mặt phẳng (α) song song với mặt phẳng (β) cho trước và cách điểm M một khoảng k cho trước. Dạng 15: Viết phương trình mặt phẳng (α) tiếp xúc với mặt cầu (S). Dạng 16: Viết phương trình mặt phẳng (α) chứa một đường thẳng ∆ và tạo với một mặt phẳng (β) cho trước một góc ϕ cho trước.
Tóm tắt lý thuyết và bài tập trắc nghiệm phương trình đường thẳng
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình đường thẳng, một chủ đề rất quan trọng trong chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian. Bên cạnh tài liệu phương trình đường thẳng dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. [ads] Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình đường thẳng: A. KIẾN THỨC CƠ BẢN 1. Viết phương trình đường thẳng ∆ đi qua hai điểm phân biệt A và B. 2. Đường thẳng ∆ đi qua điểm M và song song với d. 3. Viết phương trình đường thẳng ∆ đi qua điểm M và vuông góc với mặt phẳng (α). 4. Viết phương trình đường thẳng ∆ đi qua điểm M và vuông góc với hai đường thẳng d1 và d2 (hai đường thẳng không cùng phương). 5. Viết phương trình đường thẳng ∆ đi qua điểm M vuông góc với đường thẳng d và song song với mặt phẳng (α). 6. Viết phương trình đường thẳng ∆ đi qua điểm A và song song với hai mặt phẳng (α) và (β) với (α) và (β) là hai mặt phẳng cắt nhau. 7. Viết phương trình đường thẳng ∆ là giao tuyến của hai mặt phẳng (α) và (β). 8. Viết phương trình đường thẳng ∆ đi qua điểm A và cắt hai đường thẳng d1 và d2 (A không thuộc d1 và d2). 9. Viết phương trình đường thẳng ∆ nằm trong mặt phẳng (α) và cắt hai đường thẳng d1 và d2. 10. Viết phương trình đường thẳng ∆ đi qua điểm A, vuông góc và cắt d. 11. Viết phương trình đường thẳng ∆ đi qua điểm A, vuông góc với d1 và cắt d2 với A ∉ d2. 12. Viết phương trình đường thẳng ∆ đi qua điểm A, cắt đường thẳng d và song song với mặt phẳng (α). 13. Viết phương trình đường thẳng ∆ nằm trong mặt phẳng (α) cắt và vuông góc đường thẳng d. 14. Viết phương trình đường thẳng ∆ đi qua giao điểm A của đường thẳng d và mặt phẳng (α), nằm trong (α) và vuông góc đường thẳng d (ở đây d không vuông góc với (α)). 15. Viết phương trình đường thẳng ∆ là đường vuông góc chung của hai đường thẳng chéo nhau d1 và d2. 16. Viết phương trình đường thẳng ∆ song song với đường thẳng d và cắt cả hai đường thẳng d1 và d2. 17. Viết phương trình đường thẳng ∆ vuông góc với mặt phẳng (α) và cắt cả hai đường thẳng d1 và d2. 18. Viết phương trình ∆ là hình chiếu vuông góc của d lên mặt phẳng (α). 19. Viết phương trình ∆ là hình chiếu song song của d lên mặt phẳng (α) theo phương d’. B. KỸ NĂNG CƠ BẢN 1. Học sinh xác định được vectơ chỉ phương và điểm nào đó thuộc đường thẳng khi cho trước phương trình. 2. Học sinh biết cách chuyển từ phương trình tham số qua phương trình chính tắc và ngược lại. 3. Học sinh lập được phương trình chính tắc và phương trình tham số. 4. Học sinh tìm được hình chiếu, điểm đối xứng. C. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm tọa độ trong không gian
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm tọa độ trong không gian, một chủ đề rất quan trọng trong chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian. Bên cạnh tài liệu tọa độ trong không gian dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. [ads] Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm tọa độ trong không gian: A. LÝ THUYẾT 1. Hệ trục tọa độ trong không gian. 2. Tọa độ của vectơ. 3. Tọa độ của điểm. 4. Tích có hướng của hai vectơ. 5. Một vài thao tác sử dụng máy tính bỏ túi (Casio Fx570 Es Plus, Casio Fx570 Vn Plus, Vinacal 570 Es Plus). B. BÀI TẬP TRẮC NGHIỆM