Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Yên Bái

Nội dung Đề thi tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Yên Bái Bản PDF - Nội dung bài viết Đề thi tuyển sinh vào môn Toán năm 2021-2022 sở GD&ĐT Yên Bái Đề thi tuyển sinh vào môn Toán năm 2021-2022 sở GD&ĐT Yên Bái Ngày 10 tháng 06 năm 2021, Sở Giáo dục và Đào tạo tỉnh Yên Bái đã tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán cho năm học 2021 – 2022. Đề thi được mã hoá là 014 và được biên soạn dưới dạng trắc nghiệm 100%. Đề bao gồm 05 trang với 50 câu hỏi và bài toán, thời gian làm bài là 90 phút. Đề thi có đáp án và lời giải chi tiết. Trích dẫn một số câu hỏi trong đề thi: Gọi S là tập hợp tất cả các giá trị của m để đường thẳng y = mx + m² - 1 cắt trục tung và trục hoành lần lượt tại hai điểm phân biệt A và B sao cho AOB là một tam giác cân. Tổng các phần tử của tập hợp S bằng bao nhiêu? Để đo chiều cao AB của một bức tường, người ta đặt hai cọc thẳng đứng vuông góc với mặt đất và sợi dây FC như hình vẽ. Khi đó, chiều cao của bức tường bằng bao nhiêu? Cho hai đường tròn (O; 4 cm) và (O'; 6 cm) tiếp xúc ngoài, PQ là tiếp tuyến chung ngoài của hai đường tròn đó (P; Q là hai tiếp điểm). Độ dài của đoạn thẳng PQ bằng bao nhiêu? Để xem đầy đủ nội dung của đề thi, vui lòng tải file WORD tại đây.

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hải Dương
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Tháng đầu, hai tổ sản xuất được 900 chi tiết máy. Tháng thứ hai, do cải tiến kỹ thuật nên tổ I vượt mức 10% vả tổ II vượt mức 12% so với tháng đầu, vì vậy, hai tổ đã sản xuất được 1000 chi tiết máy. Hỏi trong tháng đầu mỗi tổ sản xuất được bao nhiêu chi tiết máy? + Cho đường tròn tâm O, bán kính R. Từ một điểm M ở ngoài đường tròn, kẻ hai tiếp tuyến MA và MB với đường tròn (A, B là các tiếp điểm). Qua A, kẻ đường thẳng song song với MO cắt đường tròn tại E (E khác A), đường thẳng ME cắt đường tròn tại F (F khác E), đường thẳng AF cắt MO tại N, H là giao điểm của MO và AB [ads] 1) Chứng minh: Tứ giác MAOB nội tiếp đường tròn 2) Chứng minh: MN^2 = NF.NA và MN = NH 3) Chứng minh: HB^2/HF^2 – EF/MF = 1
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán trường THPT chuyên Lê Quý Đôn - Bình Định
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán trường THPT chuyên Lê Quý Đôn – Bình Định gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Hai thành phố A và B cách nhau 450 km. Một ô tô đi từ A đến B với vận không đổi trong một thời gian dự định. Khi đi, ô tô tăng vận tốc hơn dự kiến 5 km/h nên đã đến B sớm hơn 1 giờ so với thời gian dự định. Tính vận tốc dự kiến ban đầu của ô tô. + Cho đường tròn (O), dây BC không phải là đường kính. Các tiếp tuyến của (O) tại B và C cắt nhau ở A. Lấy điểm M trên cung nhỏ BC (M khác B và C), gọi I,H,K lần lượt là chân đường vuông góc hạ từ M xuống BC,CA và AB. Chứng minh: [ads] a) Các tứ giác BKMI; CHMI nội tiếp b) MI^2 = MK.MH c) BM cắt IK tại D, CM cắt IH tại E. Chứng minh DE//BC
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT TP. HCM
Đề thi tuyển sinh lớp 10 THPT năm 2017 môn Toán sở GD và ĐT thành phố Hồ Chí Minh gồm 5 câu hỏi tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Một miếng đất hình chữ nhật có chu vi 100 m. Tính chiều dài và chiều rộng của miếng đất, biết rằng 5 lần chiều rộng hơn 2 lần chiều dài 40 m. + Lúc 6 giờ sáng, bạn An đi xe đạp từ nhà (điểm A) đến trường (điểm B) phải leo lên và xuống một con dốc (như hình vẽ bên dưới). Cho biết đoạn thẳng AB dài 762 m , góc A bằng 6 độ, góc B bằng 4 độ [ads] a) Tính chiều cao h của con dốc b) Hỏi bạn an đến trường lúc mấy giờ? Biết rằng tốc độ trung bình lên dốc là 4 km/h và tốc độ trung bình xuống dốc là 19km/h
Đề thi tuyển sinh lớp 10 THPT chuyên năm 2017 môn Toán sở GD và ĐT Bà Rịa - Vũng Tàu
Đề thi tuyển sinh lớp 10 THPT chuyên năm 2017 môn Toán sở GD và ĐT Bà Rịa – Vũng Tàu gồm 5 câu hỏi tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho parabol (P): y = –x^2 và đường thẳng (d): y = 4x – m a) Vẽ parabol (P) b) Tìm tất cả các giá trị của tham số m để (d) và (P) có đúng một điểm chung + Cho nửa đường tròn (O) có đường kính AB = 2R. CD là dây cung thay đổi của nửa đường tròn sao cho CD = R và C thuộc cung AD (C khác A và D khác B). AD cắt BC tại H, hai đường thẳng AC và BD cắt nhau tại F. [ads] a) Chứng minh tứ giác CFDH nội tiếp b) Chứng minh CF.CA = CH.CB c) Gọi I là trung diểm của HF. Chứng minh tia OI là tia phân giác của góc COD d) Chứng minh điểm I thuộc một đường tròn cố định khi CD thay đổi