Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường THPT Thủ Khoa Huân TP HCM

Nội dung Đề cuối học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường THPT Thủ Khoa Huân TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kì 1 môn Toán lớp 10 năm học 2022 – 2023 trường THPT Thủ Khoa Huân, thành phố Hồ Chí Minh; đề thi có đáp án và biểu điểm. Trích dẫn Đề cuối kì 1 Toán lớp 10 năm 2022 – 2023 trường THPT Thủ Khoa Huân – TP HCM : + Mệnh đề nào sau đây đúng? A. Hai vectơ (khác vectơ – không) cùng phương thì chúng cùng hướng. B. Hai vectơ (khác vectơ – không) cùng phương thì giá của chúng song song hoặc trùng nhau. C. Hai vectơ (khác vectơ – không) có giá vuông góc thì cùng phương. D. Hai vectơ (khác vectơ – không) ngược hướng với vectơ thứ ba thì hai vectơ đó cùng phương. + Biểu đồ dưới đây biểu diễn lợi nhuận mà 4 chi nhánh M N P Q của một doanh nghiệp thu được trong năm 2020 và 2021. Hãy kiểm tra xem các phát biểu sau là đúng hay sai: a) Lợi nhuận thu được của các chi nhánh trong năm 2021 đều cao hơn năm 2020. b) So với năm 2020, lợi nhuận của các chi nhánh thu được trong năm 2021 đều tăng trên 10%. + Giả sử một máy bay cứu trợ đang bay theo phương ngang và bắt đầu thả hàng từ độ cao 125 m, lúc đó máy bay đang bay với vận tốc 50 m/s. Để thùng hàng cứu trợ rơi đúng vị trí được chọn, máy bay cần bắt đầu thả hàng từ vị trí nào? Biết rằng nếu chọn gốc toạ độ là hình chiếu trên mặt đất của vị trí hàng cứu trợ bắt đầu được thả, thì toạ độ của hàng cứu trợ được cho bởi hệ 0 2 1 2 x v t y h gt. Trong đó 0 v là vận tốc ban đầu, h là độ cao tính từ khi hàng rời máy bay g 10 m/s2. Lưu ý: Chuyển động này được xem là chuyển động ném ngang.

Nguồn: sytu.vn

Đọc Sách

Đề thi cuối học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Thường Tín Hà Nội
Nội dung Đề thi cuối học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Thường Tín Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh khối lớp 10 đề thi cuối kì 1 Toán lớp 10 năm học 2020 – 2021 trường THPT Thường Tín – Hà Nội; đề thi được biên soạn theo hình thức trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 15 câu, chiếm 3,0 điểm, phần tự luận gồm 05 câu, chiếm 7,0 điểm, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi cuối kì 1 Toán lớp 10 năm 2020 – 2021 trường THPT Thường Tín – Hà Nội : + Một sợi dây có chiều dài là 6 mét được chia thành hai phần. Phần thứ nhất được uốn thành hình tam giác đều, phần thứ hai uốn thành hình vuông. Hỏi độ dài của cạnh hình tam giác đều bằng bao nhiêu mét để tổng diện tích hai hình thu được là nhỏ nhất? + Cho tam giác ABC có điểm M thuộc cạnh AC sao cho MA = -2MC, điểm N thuộc cạnh BM sao cho NB = -3NM, điểm P thuộc cạnh BC sao cho PB = kPC. a) Hãy phân tích véc tơ AN theo hai véc tơ AB và AC. b) Tìm giá trị của k để ba điểm A, N, P thẳng hàng. + Cho tam giác ABC. Tập hợp điểm M thỏa mãn: |MA + 2MB + 3MC| = |MB – MC| là: A. Đường tròn bán kính BC. B. Đường trung trực của đoạn BC. C. Trung điểm của BC. D. Đường tròn bán kính BC/6.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm học 2020 2021 sở GD ĐT Vĩnh Phúc
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm học 2020 2021 sở GD ĐT Vĩnh Phúc Bản PDF Ngày … tháng 12 năm 2020, sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 10 giai đoạn cuối học kì 1 năm học 2020 – 2021. Đề thi học kì 1 Toán lớp 10 năm học 2020 – 2021 sở GD&ĐT Vĩnh Phúc gồm 02 trang với 16 câu trắc nghiệm và 04 câu tự luận, phần trắc nghiệm chiếm 4,0 điểm, phần tự luận chiếm 6,0 điểm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết mã đề 135, 213, 358, 486. Trích dẫn đề thi học kì 1 Toán lớp 10 năm học 2020 – 2021 sở GD&ĐT Vĩnh Phúc : + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2;-3) và B(-4;1). a) Tìm tọa độ trung điểm của đoạn thẳng AB. b) Tìm tọa độ điểm C sao cho A là trọng tâm của tam giác OBC (O là gốc tọa độ). + Cho hàm số y = x^2 + ax + b. Tìm các hệ số a, b biết đồ thị hàm số đi qua hai điểm M(-1;0), N(-2;-1). + Cho phương trình x^2 – 2x – 4√(x^2 – 2x + 2) + 2m – 1 = 0 (x là ẩn, m là tham số). Tìm tất cả các giá trị của m để phương trình trên có đúng hai nghiệm phân biệt.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Lê Quý Đôn Hà Nội
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Lê Quý Đôn Hà Nội Bản PDF Đề thi HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Lê Quý Đôn – Hà Nội gồm 10 câu trắc nghiệm và 09 câu tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Lê Quý Đôn – Hà Nội : + Cho phương trình x2 – (2m – 1)x + m2 – 3m + 1 = 0 (m là tham số). Tìm tất cả các giá trị của m để phương trình có hai nghiệm x1, x2 sao cho biểu thức P = x1(x2 + 2) + x2(x1 + 2) đạt giá trị nhỏ nhất. + Cho tam giác ABC. Điểm M trên cạnh BC thỏa mãn BM = 1/3.BC. N là trung điểm của AC. Điểm P thỏa mãn AP = 2AB. a. Phân tích AM qua hai véctơ không cùng phương AB, AC. b. Chứng minh rằng M, N, P thẳng hàng. + Trong mặt phẳng tọa độ Oxy cho hai vectơ a(-3;1), b(2;5). Tính tọa độ của véctơ u = 2a – b.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Quang Trung Hà Nội
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Quang Trung Hà Nội Bản PDF Đề thi học kỳ 1 Toán lớp 10 năm 2020 – 2021 trường THPT Quang Trung – Hà Nội được biên soạn theo hình thức đề trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 35 câu, chiếm 07 điểm, phần tự luận gồm 03 câu, chiếm 03 điểm, thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 1 Toán lớp 10 năm 2020 – 2021 trường THPT Quang Trung – Hà Nội : + Cho Parabol (P): y = x2 – 4x + m – 1 và đường thẳng (d): y = -2mx + 3. a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (P) khi m = 4. b) Tìm tất cả các giá trị thực của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ âm. + Giải phương trình √(21 – x2 – 4x) = x + 3. + Trong mặt phẳng Oxy, cho tam giác ABC có A(2;1), B(1;1), C(-3;4). a) Tìm tọa độ trọng tâm G và trực tâm H của tam giác ABC. b) Tìm tọa độ điểm M thuộc trục hoành sao cho (MA + MB) đạt giá trị nhỏ nhất.