Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 2 (HK2) lớp 11 môn Toán năm 2021 2022 trường THPT Thăng Long Hà Nội

Nội dung Đề cuối học kì 2 (HK2) lớp 11 môn Toán năm 2021 2022 trường THPT Thăng Long Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kì 2 môn Toán lớp 11 năm học 2021 – 2022 trường THPT Thăng Long, thành phố Hà Nội; đề thi gồm 16 câu trắc nghiệm (04 điểm) và 05 câu tự luận (06 điểm), thời gian làm bài kiểm tra là 90 phút (không kể thời gian giám thị phát đề). Trích dẫn đề cuối học kì 2 Toán lớp 11 năm 2021 – 2022 trường THPT Thăng Long – Hà Nội : + Cho hình chóp S ABCD có đáy ABCD là hình vuông tâm O AB a SO vuông góc với đáy ABCD và SO a 2. a) Chứng minh rằng mặt phẳng SAC vuông góc với mặt phẳng SBD. b) Tính khoảng cách từ điểm O đến mặt phẳng SCD và khoảng cách từ điểm A đến mặt phẳng SCD. c) Tính cosin góc tạo bởi đường thẳng SB và mặt phẳng SCD. + Cho tứ diện ABCD biết BCD vuông tại B AB BCD AB a BC a BD a 2 3 M là trung điểm của BC. Tính diện tích thiết diện của hình tứ diện khi cắt bởi mặt phẳng qua M và vuông góc với BC. + Cho hình chóp S ABCD có SA ABCD đáy ABCD là hình thang vuông tại A và D (tham khảo hình vẽ bên). Biết AD DC a AB a 2 khẳng định nào sau đây sai?

Nguồn: sytu.vn

Đọc Sách

Đề thi học kỳ 2 Toán 11 năm 2021 - 2022 trường Quốc tế Á Châu - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi cuối học kỳ 2 môn Toán 11 năm học 2021 – 2022 trường TH – THCS – THPT Quốc tế Á Châu, thành phố Hồ Chí Minh.
Đề thi học kỳ 2 Toán 11 năm 2021 - 2022 trường THPT Bùi Thị Xuân - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi cuối học kỳ 2 môn Toán 11 năm học 2021 – 2022 trường THPT Bùi Thị Xuân, thành phố Hồ Chí Minh. Trích dẫn đề thi học kỳ 2 Toán 11 năm 2021 – 2022 trường THPT Bùi Thị Xuân – TP HCM : + Một vật chuyển động có phương trình 3 2 2 7 5 3 t S t t t trong đó t (tính bằng giây) là thời gian vật chuyển động kể từ lúc bắt đầu chuyển động (t > 0) và S (tính bằng mét) là quãng đường vật đi được trong khoảng thời gian t. Tính vận tốc của vật tại thời điểm mà vật có vận tốc nhỏ nhất. + Chứng minh phương trình 2 4 2 m m x x mx 4 2 3 0 luôn có nghiệm với mọi giá trị thực của tham số m. + Cho hình vuông ABCD cạnh a. Gọi I, J, K lần lượt là trung điểm các đoạn thẳng AB, BC, CD. Trên đường thẳng vuông góc với mặt phẳng (ABCD) tại điểm I lấy điểm S sao cho tam giác SAB đều. a) Chứng minh mặt phẳng (SAB) vuông góc với mặt phẳng (ABCD) và tam giác SBC vuông. b) Chứng minh đường thẳng DJ vuông góc với mặt phẳng (SIC). c) Xác định và tính góc giữa đường thẳng SD với mặt phẳng (SAB). d) Tính khoảng cách giữa hai đường thẳng AB và SC theo a.
Đề thi học kỳ 2 Toán 11 năm 2021 - 2022 trường THPT Lý Thường Kiệt - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi cuối học kỳ 2 môn Toán 11 năm học 2021 – 2022 trường THPT Lý Thường Kiệt, thành phố Hồ Chí Minh. Trích dẫn đề thi học kỳ 2 Toán 11 năm 2021 – 2022 trường THPT Lý Thường Kiệt – TP HCM : + Cho hàm số 2 x y x có đồ thị (C). Viết phương trình tiếp tuyến của (C) tại điểm M(1;1). + Cho đường cong 3 1 1 x C y x. Viết phương trình tiếp tuyến của (C) biết rằng tiếp tuyến song song với đường thẳng d y x 4 1. + Cho hình chóp S.ABCD có ABCD là hình vuông cạnh a; H là trung điểm của AB; SH vuông góc với mặt phẳng (ABCD) 6 2 a SA. a) Chứng minh: SBC SAB. b) Tính góc giữa đường thẳng SC và mặt phẳng (ABCD). c) Gọi M là trung điểm SA. Tính khoảng cách từ điểm M đến mặt phẳng (SCD).
Đề thi học kỳ 2 Toán 11 năm 2021 - 2022 trường THPT Tam Phú - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi cuối học kỳ 2 môn Toán 11 năm học 2021 – 2022 trường THPT Tam Phú, thành phố Hồ Chí Minh. Trích dẫn đề thi học kỳ 2 Toán 11 năm 2021 – 2022 trường THPT Tam Phú – TP HCM : + Tính đạo hàm các hàm số sau? + Viết phương trình tiếp tuyến với đường cong 3 2 C y x x 2 1 tại điểm có hoành độ x0 = −1. + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a SA a 3 SA ABCD a) Chứng minh: SAC SBD. b) Tính góc giữa hai mặt phẳng (SBC) và (ABCD). c) Gọi I là hình chiếu của A lên SC. Từ I lần lượt vẽ các đường thẳng song song với SB, SD cắt BC, CD tại P, Q. Gọi E là giao điểm của PQ và AB. Tính khoảng cách từ E đến mặt phẳng (SBD).