Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề mặt tròn xoay, mặt nón - trụ - cầu - Đặng Việt Đông

Tài liệu gồm 64 trang tóm tắt lý thuyết cơ bản và tuyển chọn các bài toán chuyên đề mặt tròn xoay, mặt nón – trụ – cầu có lời giải chi tiết. I. HÌNH NÓN – KHỐI NÓN 1. Mặt nón tròn xoay + Trong mặt phẳng (P), cho 2 đường thẳng d, Δ cắt nhau tại O và chúng tạo thành góc β với 0 < β < 90 độ. Khi quay mp(P) xung quanh trục Δ với góc β không thay đổi được gọi là mặt nón tròn xoay đỉnh O. + Người ta thường gọi tắt mặt nón tròn xoay là mặt nón. Đường thẳng Δ gọi là trục, đường thẳng d được gọi là đường sinh và góc 2β gọi là góc ở đỉnh. 2. Hình nón tròn xoay + Cho ΔOIM vuông tại I quay quanh cạnh góc vuông OI thì đường gấp khúc OIM tạo thành một hình, gọi là hình nón tròn xoay (gọi tắt là hình nón). + Đường thẳng OI gọi là trục, O là đỉnh, OI gọi là đường cao và OM gọi là đường sinh của hình nón. + Hình tròn tâm I, bán kính r = IM là đáy của hình nón. 3. Công thức diện tích và thể tích của hình nón Cho hình nón có chiều cao là h, bán kính đáy r và đường sinh là l thì có: + Diện tích xung quanh: Sxq=π.r.l + Diện tích đáy (hình tròn): Str=π.r^2 + Diện tích toàn phần hình tròn: S = Str + Sxq + Thể tích khối nón: Vnón = 1/3.Str.h = 1/3π.r^2.h 4. Tính chất: Nếu cắt mặt nón tròn xoay bởi mặt phẳng đi qua đỉnh thì có các trường hợp sau xảy ra: + Mặt phẳng cắt mặt nón theo 2 đường sinh → Thiết diện là tam giác cân + Mặt phẳng tiếp xúc với mặt nón theo một đường sinh. Trong trường hợp này, người ta gọi đó là mặt phẳng tiếp diện của mặt nón. Nếu cắt mặt nón tròn xoay bởi mặt phẳng không đi qua đỉnh thì có các trường hợp sau xảy ra: + Nếu mặt phẳng cắt vuông góc với trục hình nón → giao tuyến là một đường tròn. + Nếu mặt phẳng cắt song song với 2 đường sinh hình nón → giao tuyến là 2 nhánh của 1 hypebol. + Nếu mặt phẳng cắt song song với 1 đường sinh hình nón → giao tuyến là 1 đường parabol. [ads] II. HÌNH TRỤ – KHỐI TRỤ 1. Mặt trụ tròn xoay + Trong mp(P) cho hai đường thẳng Δ và l song song nhau, cách nhau một khoảng r. Khi quay mp(P) quanh trục cố định Δ thì đường thẳng l sinh ra một mặt tròn xoay được gọi là mặt trụ tròn xoay hay gọi tắt là mặt trụ. + Đường thẳng Δ được gọi là trục. + Đường thẳng l được gọi là đường sinh. + Khoảng cách r được gọi là bán kính của mặt trụ. 2. Hình trụ tròn xoay Khi quay hình chữ nhật ABCD xung quanh đường thẳng chứa một cạnh, chẳng hạn cạnh AB thì đường gấp khúcABCD tạo thành một hình, hình đó được gọi là hình trụ tròn xoay hay gọi tắt là hình trụ. + Đường thẳng AB được gọi là trục. + Đoạn thẳng CD được gọi là đường sinh. + Độ dài đoạn thẳng AB = CD = h được gọi là chiều cao của hình trụ. + Hình tròn tâm A, bán kính r = AD và hình tròn tâm B, bán kính r = BC được gọi là 2 đáy của hình trụ. + Khối trụ tròn xoay, gọi tắt là khối trụ, là phần không gian giới hạn bởi hình trụ tròn xoay kể cả hình trụ. 3. Công thức tính diện tích và thể tích của hình trụ Cho hình trụ có chiều cao là h và bán kính đáy bằng r, khi đó: + Diện tích xung quanh của hình trụ: Sxq = 2πrh + Diện tích toàn phần của hình trụ: Stp=Sxq+Sđ=2πrh+2πr2 + Thể tích khối trụ: V = Bh = πr^2h 4. Tính chất + Nếu cắt mặt trụ tròn xoay (có bán kính là r) bởi một mp(α) vuông góc với trục Δ thì ta được đường tròn có tâm trên Δ và có bán kính bằng r với r cũng chính là bán kính của mặt trụ đó. + Nếu cắt mặt trụ tròn xoay (có bán kính là r) bởi một mp(α) không vuông góc với trục Δ nhưng cắt tất cả các đường sinh, ta được giao tuyến là một đường elíp có trụ nhỏ bằng 2r và trục lớn bằng 2r/sinα trong đó φ là góc giữa trục Δ và mp(α) với 0 < φ < 90 độ. Cho mp(α) song song với trục Δ của mặt trụ tròn xoay và cách Δ một khoảng k. + Nếu k < r thì mp(α) cắt mặt trụ theo hai đường sinh → thiết diện là hình chữ nhật. + Nếu k = r thì mp(α) tiếp xúc với mặt trụ theo một đường sinh. + Nếu k > r thì mp(α) không cắt mặt trụ. III. MẶT CẦU – KHỐI CẦU 1. Vị trí tương đối giữa mặt cầu và mặt phẳng Cho mặt cầu S(O; R) và mặt phẳng (P). Gọi d = d(O; (P)). + Nếu d < R thì (P) cắt (S) theo giao tuyến là đường tròn nằm trên (P), có tâm H và bán kính. + Nếu d = R thì (P) tiếp xúc với (S) tại tiếp điểm H. ((P) được gọi là tiếp diện của (S)). + Nếu d > R thì (P) và (S) không có điểm chung. Khi d = 0 thì (P) đi qua tâm O và được gọi là mặt phẳng kính, đường tròn giao tuyến có bán kính bằng R được gọi là đường tròn lớn. 2. Vị trí tương đối giữa mặt cầu và đường thẳng Cho mặt cầu S(O; R) và đường thẳng Δ. Gọi d = d(O; Δ). + Nếu d < R thì Δ cắt (S) tại hai điểm phân biệt. + Nếu d = R thì Δ tiếp xúc với (S). (được gọi là tiếp tuyến của (S)). + Nếu d > R thì Δ và (S) không có điểm chung. 3. Xác định tâm mặt cầu ngoại tiếp khối đa diện a. Mặt cầu ngoại tiếp hình chóp + Cách 1: Nếu (n – 2) đỉnh của đa diện nhìn hai đỉnh còn lại dưới một góc vuông thì tâm của mặt cầu là trung điểm của đoạn thẳng nối hai đỉnh đó. + Cách 2: Để xác định tâm của mặt cầu ngoại tiếp hình chóp. – Xác định trục Δ của đáy (Δ là đường thẳng vuông góc với đáy tại tâm đường tròn ngoại tiếp đa giác đáy). – Xác định mặt phẳng trung trực (P) của một cạnh bên. – Giao điểm của (P) và Δ là tâm của mặt cầu ngoại tiếp hình chóp. b. Mặt cầu ngoại tiếp hình lăng trụ đứng – Xác định trục Δ của hai đáy (Δ là đường thẳng vuông góc với đáy tại tâm đường tròn ngoại tiếp đa giác đáy). – Trung điểm đoạn nối hai tâm đa giác đáy là tâm của mặt cầu ngoại tiếp hình chóp

Nguồn: toanmath.com

Đọc Sách

Chuyên đề mặt nón, mặt trụ và mặt cầu
Nối tiếp chuyên đề khối đa diện mà đã đăng tải từ trước đó, thầy Nguyễn Văn Vinh và thầy Lê Đình Hùng  (Omega Group) tiếp tục chia sẻ tài liệu chuyên đề mặt nón, mặt trụ và mặt cầu, giúp học sinh học tốt chương trình Hình học 12 chương 2 và ôn thi THPT Quốc gia môn Toán. Khái quát nội dung tài liệu chuyên đề mặt nón, mặt trụ và mặt cầu: BÀI 1 : MẶT NÓN – HÌNH NÓN – KHỐI NÓN. 1. Lý thuyết + Mặt tròn xoay. + Mặt nón, hình nón và khối nón tròn xoay. + Các công thức tính diện tích và thể tích của hình nón. + Thiết diện của mặt phẳng với hình nón. 2. Bài tập + Bài toán 1. Tính diện tích – thể tích hình nón, khối nón. + Bài toán 2. Các bài toán về thiết diện của mặt phẳng qua đỉnh của hình nón. + Bài toán 3. Hình nón ngoại tiếp, nội tiếp hình chóp đều. + Bài toán 4. Bài toán hình nón cụt. [ads] BÀI 2 : MẶT TRỤ TRÒN XOAY. 1. Lý thuyết + Định nghĩa mặt trụ tròn xoay. + Hình trụ tròn xoay và khối trụ tròn xoay. + Thiết diện của mặt phẳng với hình trụ. + Các công thức tính diện tích và thể tích của hình trụ. 2. Bài tập + Bài toán 1. Thể tích của tứ diện tạo bởi hai đường kính chéo nhau nằm ở hai đáy. + Bài toán 2. Góc giữa đường thẳng nối hai tâm và đường thẳng nối hai điểm trên hai đường tròn của đáy. + Bài toán 3. Khoảng cách giữa đường thẳng nối hai tâm của đáy và đường thẳng nối hai điểm trên hai đường tròn của đáy. + Bài toán 4. Thể tích của khối trụ ngoại tiếp hình lăng trụ tam giác đều có thể tích là V. + Bài toán 5. Diện tích xung quanh của hình trụ khi nội tiếp trong hình lăng trụ tứ giác đều có diện tích xung quanh là S. + Bài toán 6. Mối liên hệ giữa diện tích xung quanh, toàn phần và thể tích khối trụ trong bài toán tối ưu. BÀI 3 : MẶT CẦU VÀ KHỐI CẦU. 1. Lý thuyết + Định nghĩa mặt cầu và khối cầu. + Đường kinh tuyến và vĩ tuyến của mặt cầu. + Vị trí tương đối giữa mặt cầu và mặt phẳng. + Vị trí tương đối giữa mặt cầu và đường thẳng. + Diện tích và thể tích của mặt cầu. + Mặt cầu ngoại tiếp và nội tiếp hình đa diện, hình trụ và hình nón. 2. Bài tập + Bài toán 1. Mặt cầu ngoại tiếp hình hộp chữ nhật, hình lập phương. + Bài toán 2. Mặt cầu ngoại tiếp hình lăng trụ đứng có đáy nội tiếp được trong đường tròn. + Bài toán 3. Mặt cầu ngoại tiếp hình chóp có các đỉnh nhìn đoạn thẳng nối hai đỉnh còn lại dưới một góc vuông. + Bài toán 4. Mặt cầu ngoại tiếp hình chóp đều. + Bài toán 5. Mặt cầu ngoại tiếp hình chóp có một cạnh bên vuông góc với đáy. + Bài toán 6. Mặt cầu ngoại tiếp hình chóp có một mặt bên vuông góc với đáy.
Lý thuyết và bài tập mặt nón - mặt trụ - mặt cầu - Phùng Hoàng Em
Chuyên đề gồm 15 trang được biên soạn bởi thầy giáo Phùng Hoàng Em tóm tắt lý thuyết cần nắm và tuyển chọn các bài tập trắc nghiệm chủ đề mặt nón – mặt trụ – mặt cầu giúp học sinh khối 12 học tốt chương trình Hình học 12 chương 2. Khái quát nội dung tài liệu lý thuyết và bài tập mặt nón – mặt trụ – mặt cầu – Phùng Hoàng Em: Bài 1 . MẶT NÓN – KHỐI NÓN A. KIẾN THỨC CẦN NHỚ 1. Mặt nón – hình nón – khối nón: Khi quay SM quanh trục cố định SO, ta được mặt nón. Khi quay đường gấp khúc SMO quanh trục cố định SO, ta được hình nón. Hình nón và phần không gian bên trong nó tạo thành khối nón. 2. Các công thức tính: Các đại lượng cần nhớ: đường sinh, đường cao, bán kính đáy; Diện tích xung quanh; Diện tích đáy; Diện tích toàn phần; Thể tích. 3. Khối nón cụt: Đường cao; Bán kính đáy lớn; Bán kính đáy nhỏ; Thể tích. B. PHƯƠNG PHÁP GIẢI TOÁN : Gồm 12 ví dụ. C. BÀI TẬP TRẮC NGHIỆM TỰ LUYỆN : Gồm 25 câu hỏi và bài toán trắc nghiệm có đáp án. [ads] Bài 2 . MẶT TRỤ – KHỐI TRỤ A. LÝ THUYẾT CẦN NHỚ 1. Xoay hình chữ nhật ABCD quanh trục AB: Đoạn CD tạo thành mặt trụ. Đường gấp khúc ADCB tạo thành hình trụ. Hình trụ và phần không gian bên trong nó tạo thành khối trụ. 2. Các đại lượng cần nhớ: Bán kính đáy; Đường sinh; Đường cao. 3. Công thức tính: Diện tích xung quanh; Diện tích đáy; Diện tích toàn phần; Thể tích. B. CÁC DẠNG TOÁN THƯỜNG GẶP Dạng 1. Xác định các yếu tố cơ bản của hình trụ. Dạng 2. Thiết diện của hình trụ cắt bởi mặt phẳng. Dạng 3. Xoay hình phẳng tạo thành khối trụ. Dạng 4. Khối trụ ngoại tiếp và nội tiếp. C. BÀI TẬP TRẮC NGHIỆM TỰ LUYỆN : Gồm 30 câu hỏi và bài toán trắc nghiệm có đáp án. Xem thêm : Lý thuyết và bài tập khối đa diện và thể tích khối đa diện – Phùng Hoàng Em
Trắc nghiệm VD - VDC nón - trụ - cầu - Đặng Việt Đông
Với mục đích hỗ trợ các em học sinh khối 12 trong quá trình học tập nâng cao các dạng toán trong chương trình Hình học 12 chương 2 – nón – trụ – cầu, ôn tập hướng đến kỳ thi Trung học Phổ thông Quốc gia môn Toán, thầy Đặng Việt Đông biên soạn cuốn tài liệu trắc nghiệm vận dụng – vận dụng cao chuyên đề nón – trụ – cầu. Tài liệu trắc nghiệm VD – VDC nón – trụ – cầu – Đặng Việt Đông gồm 94 trang với các bài tập trắc nghiệm nón – trụ – cầu ở mức độ vận dụng và vận dụng cao, được trích từ các đề thi thử THPT Quốc gia môn Toán của các trường, sở GD&ĐT, đề tham khảo – đề minh họa – đề chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo, các bài tập về nón – trụ – cầu được phân tách thành các dạng toán cụ thể, có đáp án và lời giải chi tiết. [ads] Các dạng toán được đề cập trong tài liệu trắc nghiệm VD – VDC nón – trụ – cầu – Đặng Việt Đông: CHỦ ĐỀ 1 . MẶT NÓN TRÒN XOAY VÀ KHỐI NÓN. + Dạng 1. Thiết diện của hình nón cắt bởi một mặt phẳng. + Dạng 2. Bài toán liên quan đến thiết diện qua đỉnh của hình nón. + Dạng 3. Bài toán hình nón ngoại tiếp và nội tiếp hình chóp. + Dạng 4. Bài toán hình nón cụt. + Dạng 5. Bài toán hình nón tạo bởi phần còn lại của hình tròn sau khi cắt bỏ đi hình quạt. CHỦ ĐỀ 2 . MẶT TRỤ TRÒN XOAY VÀ KHỐI TRỤ. + Dạng 1. Thiết diện của hình trụ cắt bởi một phẳng. + Dạng 2. Thể tích khối tứ diện có hai cạnh là đường kính hai đáy. + Dạng 3. Xác định góc khoảng cách. + Dạng 4. Xác định mối liên hệ giữa diện tích xung quanh, toàn phần và thể tích khối trụ trong bài toán tối ưu. + Dạng 5. Hình trụ ngoại tiếp, nội tiếp một hình lăng trụ đứng. CHỦ ĐỀ 3 . MẶT CẦU VÀ KHỐI CẦU. + Dạng 1. Mặt cầu ngoại tiếp, nội tiếp khối đa diện. + Dạng 2. Cực trị về khối cầu và mặt tròn xoay. + Dạng 3. Tổng hợp về mặt tròn xoay. CHỦ ĐỀ 4 . ỨNG DỤNG THỰC TẾ. Xem thêm : Trắc nghiệm VD – VDC khối đa diện và thể tích khối đa diện – Đặng Việt Đông
Các dạng toán nón - trụ - cầu thường gặp trong kỳ thi THPTQG
Nhằm hỗ trợ các em học sinh lớp 12 trong quá trình học tập chương trình Hình học 12 chương 2 và ôn tập thi THPT Quốc gia môn Toán năm học 2019 – 2020, giới thiệu đến các em tài liệu tuyển tập các dạng toán nón – trụ – cầu thường gặp trong kỳ thi THPTQG. Tài liệu gồm 127 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển chọn các bài toán trắc nghiệm khối tròn xoay, mặt nón, mặt trụ, mặt cầu có đáp án và lời giải chi tiết, các bài tập được trích từ các đề thi THPT Quốc gia môn Toán các năm 2017 – 2018 – 2019. Mục lục tài liệu các dạng toán nón – trụ – cầu thường gặp trong kỳ thi THPTQG: CHỦ ĐỀ 1 . HÌNH NÓN – KHỐI NÓN PHẦN A . CÂU HỎI Dạng 1. Diện tích xung quanh, diện tích toàn phần, chiều cao, bán kính đáy, thiết diện (Trang 1). Dạng 2. Thể tích (Trang 3). Dạng 3. Khối tròn xoay nội, ngoại tiếp khối đa diện (Trang 6). Dạng 4. Bài toán thực tế (Trang 8). Dạng 5. Bài toán cực trị (Trang 9). PHẦN B . ĐÁP ÁN THAM KHẢO Dạng 1. Diện tích xung quanh, diện tích toàn phần, chiều cao, bán kính đáy, thiết diện (Trang 10). Dạng 2. Thể tích (Trang 17). Dạng 3. Khối tròn xoay nội, ngoại tiếp khối đa diện (Trang 24). Dạng 4. Bài toán thực tế (Trang 29). Dạng 5. Bài toán cực trị (Trang 32). [ads] CHỦ ĐỀ 2 . HÌNH TRỤ – KHỐI TRỤ PHẦN A . CÂU HỎI Dạng 1. Diện tích xung quanh, diện tích toàn phần, chiều cao, bán kính đáy, thiết diện (Trang 1). Dạng 2. Thể tích (Trang 3). Dạng 3. Khối tròn xoay nội, ngoại tiếp khối đa diện (Trang 4). Dạng 4. Bài toán thực tế (Trang 5). Dạng 5. Bài toán cực trị (Trang 8). PHẦN B . ĐÁP ÁN THAM KHẢO Dạng 1. Diện tích xung quanh, diện tích toàn phần, chiều cao, bán kính đáy, thiết diện (Trang 9). Dạng 2. Thể tích (Trang 14). Dạng 3. Khối tròn xoay nội, ngoại tiếp khối đa diện (Trang 15). Dạng 4. Bài toán thực tế (Trang 19). Dạng 5. Bài toán cực trị (Trang 23). [ads] CHỦ ĐỀ 3 . MẶT CẦU – KHỐI CẦU PHẦN A . CÂU HỎI Dạng 1. Diện tích xung quanh, bán kính (Trang 1). Dạng 2. Thể tích (Trang 2). Dạng 3. Khối cầu nội tiếp, ngoại tiếp khối đa diện (Trang 3). Dạng 3.1 Khối cầu nội tiếp, ngoại tiếp khối lăng trụ (Trang 3). Dạng 3.2 Khối cầu nội tiếp, ngoại tiếp khối chóp (Trang 4). Dạng 3.2.1 Khối chóp có cạnh bên vuông góc với đáy (Trang 4). Dạng 3.2.2 Khối chóp có mặt bên vuông góc với đáy (Trang 7). Dạng 3.2.3 Khối chóp đều (Trang 8). Dạng 3.2.4 Khối chóp khác (Trang 8). Dạng 4. Bài toán thực tế, cực trị (Trang 10). PHẦN B . ĐÁP ÁN THAM KHẢO Dạng 1. Diện tích xung quanh, bán kính (Trang 11). Dạng 2. Thể tích (Trang 12). Dạng 3. Khối cầu nội tiếp, ngoại tiếp khối đa diện (Trang 13). Dạng 3.1 Khối cầu nội tiếp, ngoại tiếp khối lăng trụ (Trang 13). Dạng 3.2 Khối cầu nội tiếp, ngoại tiếp khối chóp (Trang 17) Dạng 3.2.1 Khối chóp có cạnh bên vuông góc với đáy (Trang 17) Dạng 3.2.2 Khối chóp có mặt bên vuông góc với đáy (Trang 29). Dạng 3.2.3 Khối chóp đều (Trang 36). Dạng 3.2.4 Khối chóp khác (Trang 39). Dạng 4. Bài toán thực tế, cực trị (Trang 49). CHỦ ĐỀ 4 . MỘT SỐ BÀI TOÁN TỔNG HỢP KHỐI TRÒN XOAY