Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT năm 2018 2019 sở GD và ĐT Hải Dương

Nội dung Đề tuyển sinh THPT năm 2018 2019 sở GD và ĐT Hải Dương Bản PDF - Nội dung bài viết Đề tuyển sinh THPT năm 2018 - 2019 sở GD và ĐT Hải Dương Đề tuyển sinh THPT năm 2018 - 2019 sở GD và ĐT Hải Dương Đề tuyển sinh lớp 10 THPT năm 2018 - 2019 của sở GD và ĐT Hải Dương được biên soạn nhằm đánh giá và phân loại học sinh lớp 9 theo năng lực học Toán. Mục tiêu chính của đề thi là giúp các trường THPT tại tỉnh Hải Dương chọn lựa học sinh vào lớp 10 dựa trên tiêu chí của trường. Đề thi cung cấp lời giải chi tiết để học sinh hiểu rõ bài giải và có thể tự giải quyết các bài toán phức tạp. Việc soạn đề tuyển sinh cũng nhằm hỗ trợ học sinh tự tin hơn khi chuẩn bị cho kỳ thi tuyển sinh vào lớp 10, giúp họ nắm vững kiến thức và kỹ năng cần thiết. Đề thi cũng góp phần nâng cao chất lượng đào tạo và tuyển sinh của các trường THPT tại Hải Dương, đồng thời tạo điều kiện cho học sinh phát triển toàn diện trong học tập và sự nghiệp sau này. Qua việc tổ chức thi tuyển sinh và sử dụng đề thi này, sở GD và ĐT Hải Dương mong muốn tìm ra những học sinh có tiềm năng và khả năng để đào tạo và phát triển trong tương lai, đồng thời đáp ứng nhu cầu chất lượng đào tạo của xã hội.

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Lam Sơn - Thanh Hóa
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Lam Sơn – Thanh Hóa (Đề chung dành cho tất cả thí sinh) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (O) với tâm O có bán kính R đường kính AB cố định, M là một điểm di động trên (O) .sao cho M không trùng với các điểm A và B. Lấy C là điểm đối xứng với O qua A. Đường thẳng vuông góc với AB tại C cắt đường thẳng AM tại N đường thẳng BN cắt đường tròn (O) tại điểm thứ hai E. Các đường thẳng BM và CN cắt nhau tại F [ads] a) Chứng minh ba điểm A; E; F thẳng hàng và tứ giác MENF nội tiếp b) Chứng minh: AM.AN = 2R^2 c) Xác định vị trí của điểm M trên đường tròn (O) để tam giác BNF có diện tích nhỏ nhất
Đề thi thử tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán trường THCS Võ Thị Sáu - Hải Phòng lần 1
Đề thi thử tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán trường THCS Võ Thị Sáu – Hải Phòng lần 1 gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Một hãng taxi giá rẻ định giá tiền theo hai gói cước trong bảng giá như sau: Gói 1: Giá mở cửa là 6000 đồng/1km cho 10km đầu tiên và 2500 đồng với mỗi km tiếp theo Gói 2: 4000 đồng cho mỗi km trên cả quãng đường a) Nếu cô Tâm cần đi một quãng đường là 35 km thì chọn gói cước nào có lợi hơn? b) Nếu cô Tâm cần đi một quãng đường là x km mà chọn gói cước 1 có lợi hơn thì x phải thỏa mãn điều kiện gì? [ads] + Cho đường tròn (O; R), đường kính AB vuông góc với dây cung MN tại điểm H (H nằm giữa O và B). Trên tia đối của tia NM lấy điểm C sao cho đoạn thẳng AC cắt (O) tại K khác A. Hai dây MN và BK cắt nhau ở E a/ Chứng minh tứ giác AHEK nội tiếp b/ Qua N kẻ đường thẳng vuông góc với AC cắt tia MK tại F. Chứng minh tam giác NFK cân và EM.NC = EN.CM c/ Giả sử KE = KC. Chứng minh OK//MN và KM^2 + KN^2 = 4R^2 + Một hình trụ có thể tích bằng 35pi dm3. Hãy so sánh thể tích hình trụ này với thể tích hình cầu đường kính 6dm
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Bắc Ninh
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Bắc Ninh gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Một nhóm gồm 15 học sinh (cả nam và nữ) tham gia buổi lao động trồng cây. Các bạn nam trồng được 30 cây, các bạn nữ trồng được 36 cây. Mỗi bạn nam trồng được số cây như nhau và mỗi bạn nữ trồng được số cây như nhau. Tính số học sinh nam và số học sinh nữ của nhóm, biết rằng mỗi bạn nam trồng được nhiều hơn mỗi bạn nữ 1 cây. + Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB với đường tròn (A, B là các tiếp điểm). Lấy điểm C trên cung nhỏ AB (C không trùng với A và B). Từ điểm C kẻ CD vuông góc với AB, CE vuông góc với MA, CF vuông góc với MB (D∈AB, E∈MA, F∈MB). Gọi I là giao điểm của AC và DE, K là giao điểm của BC và DF. Chứng minh rằng: [ads] 1. Tứ giác ADCE nội tiếp một đường tròn 2. Hai tam giác CDE và CFD đồng dạng 3. Tia đối của CD là tia phân giác của góc( ECF) 4. Đường thẳng IK song song với đường thẳng AB
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Bình Phước
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Bình Phước gồm 5 bài toán tự luận, có lời giải chi tiết câu khó. Trích một số bài toán trong đề: + Cho vườn hoa hình chữ nhật có diện tích bằng 91m2 và chiều dài lớn hơn chiều rộng là 6m. Tìm chu vi của vườn hoa. + Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax với đường tròn (O) với A là tiếp điểm. Qua điểm C thuộc tia Ax, vẽ đường thẳng cắt đường tròn (O) tại hai điểm D và E (D nằm giữa C và E; D và E nằm về hai phía của đường thẳng AB). Từ O vẽ OH vuông góc với đoạn thẳng DE tại H [ads] a) Chứng minh tứ giác AOHC nội tiếp b) Chứng minh AC.AE = AD.CE c) Đường thẳng CO cắt tia BD, tia BE lần lượt tại M và N. Chứng minh AM//BN