Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân tích đề minh họa kỳ thi tốt nghiệp THPT năm 2022 môn Toán

Tài liệu gồm 87 trang, được biên soạn bởi tập thể quý thầy, cô giáo trường THPT An Phước, tỉnh Ninh Thuận: 1. Trần Ngọc Hùng; 2. Ngụy Như Thái; 3. Quảng Đại Hạn; 4. Quảng Đại Phước; 5. Đàng Xuân Phi; 6. Quảng Đại Mưa; 7. Nguyễn Văn Hồng … hướng dẫn phân tích đề minh họa kỳ thi tốt nghiệp THPT năm 2022 môn Toán. PHẦN 1 : MA TRẬN ĐỀ MINH HỌA BỘ GIÁO DỤC 2022. A Khung ma trận. B Bảng mô tả chi tiết nội dung câu hỏi. Câu 1 (2D4Y1-1). Xác định các yếu tố cơ bản của số phức. Câu 2 (2H3Y1-3). Phương trình mặt cầu (xác định tâm, bán kính, viết PT mặt cầu đơn giản, vị trí tương đối hai mặt cầu, điểm đến mặt cầu, đơn giản). Câu 3 (2D1Y5-8). Câu hỏi lý thuyết. Câu 4 (2H2Y2-1). Bài toán sử dụng định nghĩa, tính chất, vị trí tương đối. Câu 5 (2D3Y1-1). Định nghĩa, tính chất và nguyên hàm cơ bản. Câu 6 (2D1Y2-2). Tìm cực trị dựa vào BBT, đồ thị. Câu 7 (2D2Y6-1). Bất phương trình cơ bản. Câu 8 (2H1Y3-2). Tính thể tích các khối đa diện. Câu 9 (2D2Y2-1). Tập xác định của hàm số chứa hàm lũy thừa. Câu 10 (2D2Y5-1). Phương trình cơ bản. Câu 11 (2D3Y2-1). Định nghĩa, tính chất và tích phân cơ bản. Câu 12 (2D4Y2-1). Thực hiện phép tính. Câu 13 (2H3Y2-2). Xác định VTPT. Câu 14 (2H3Y1-1). Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục. Câu 15 (2D4Y1-2). Biểu diễn hình học cơ bản của số phức. Câu 16 (2D1Y4-1). Bài toán xác định các đường tiệm cận của hàm số (không chứa tham số) hoặc biết BBT, đồ thị. Câu 17 (2D2Y3-2). Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. Câu 18 (2D1Y5-1). Nhận dạng đồ thị, bảng biến thiên. Câu 19 (2H3Y3-3). Tìm tọa độ điểm liên quan đến đường thẳng. Câu 20 (1D2Y2-1). Bài toán chỉ sử dụng P hoặc C hoặc A. Câu 21 (2H1Y3-2). Tính thể tích các khối đa diện. Câu 22 (2D2Y4-2). Tính đạo hàm hàm số mũ, hàm số lô-ga-rít. Câu 23 (2D1Y1-2). Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị. Câu 24 (2H2Y1-2). Diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao,. Câu 25 (2D3Y2-1). Định nghĩa, tính chất và tích phân cơ bản. Câu 26 (1D3Y3-3). Tìm hạng tử trong cấp số cộng. Câu 27 (2D3Y1-1). Định nghĩa, tính chất và nguyên hàm cơ bản. Câu 28 (2D1Y2-2). Tìm cực trị dựa vào BBT, đồ thị. Câu 29 (2D1B3-1). GTLN, GTNN trên đoạn [a ;b ]. Câu 30 (2D1B1-1). Xét tính đơn điệu của hàm số cho bởi công thức. Câu 31 (2D2B3-2). Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. Câu 32 (1H3B2-3). Xác định góc giữa hai đường thẳng (dùng định nghĩa). Câu 33 (2D3B2-1). Định nghĩa, tính chất và tích phân cơ bản. Câu 34 (2H3B3-7). Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu. Câu 35 (2D4B3-2). Xác định các yếu tố cơ bản của số phức qua các phép toán. Câu 36 (1H3B5-3). Khoảng cách từ một điểm đến một mặt phẳng. Câu 37 (1D2B5-4). Tính xác suất bằng công thức nhân. Câu 38 (2H3B3-2). Viết phương trình đường thẳng. Câu 39 (2D2K6-3). Phương pháp đặt ẩn phụ. Câu 40 (2D1K5-4). Sự tương giao của hai đồ thị (liên quan đến tọa độ giao điểm). Câu 41 (2D3K1-1). Định nghĩa, tính chất và nguyên hàm cơ bản. Câu 42 (2H1K3-4). Các bài toán khác(góc, khoảng cách,…) liên quan đến thể tích khối đa diện. Câu 43 (2D4K4-2). Định lí Viet và ứng dụng. Câu 44 (2D4G5-1). Phương pháp hình học tìm cực trị số phức. Câu 45 (2D3G3-1). Diện tích hình phẳng được giới hạn bởi các đồ thị. Câu 46 (2H3K3-2). Viết phương trình đường thẳng. Câu 47 (2H2K1-1). Thể tích khối nón, khối trụ. Câu 48 (2D2G6-5). Phương pháp hàm số, đánh giá. Câu 49 (2H2G2-6). Bài toán tổng hợp về khối nón, khối trụ, khối cầu. Câu 50 (2D1G2-1). Tìm cực trị của hàm số cho bởi công thức. PHẦN 2 : PHÂN TÍCH ĐỀ MINH HỌA BỘ GIÁO DỤC 2022. PHẦN 3 : BÀI TẬP CHO HỌC SINH RÈN LUYỆN.

Nguồn: toanmath.com

Đọc Sách

Tài liệu hội thảo ôn thi tốt nghiệp THPT 2020 môn Toán sở GDĐT Tây Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh khối 12 tài liệu hội thảo ôn thi tốt nghiệp THPT 2020 môn Toán sở GD&ĐT Tây Ninh. Tài liệu gồm 123 trang bao gồm tổng hợp lý thuyết, hướng dẫn giải các dạng toán và hệ thống bài tập trắc nghiệm có đáp án và lời giải chi tiết, giúp học sinh ôn tập chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán năm học 2019 – 2020. Khái quát nội dung tài liệu hội thảo ôn thi tốt nghiệp THPT 2020 môn Toán sở GD&ĐT Tây Ninh: Phần 1. Phân tích cấu trúc đề minh họa tốt nghiệp THPT 2020 môn Toán. Số câu theo chương mục: 1. Tổ hợp, xác suất: 2. 2. Dãy số, cấp số: 1. 3. Quan hệ vuông góc: 2. 4. Ứng dụng đạo hàm, khảo sát hàm số: 12. 5. Lũy thừa, mũ, lôgarit: 9. 6. Nguyên hàm, tích phân: 5. 7. Số phức: 5. 8. Thể tích khối đa diện: 3. 9. Khối tròn xoay: 5. 10. Hình tọa độ không gian: 6. [ads] Số câu theo mức độ nhận thức: 1. Nhận biết: 21. 2. Thông hiểu: 17. 3. Vận dụng thấp: 7. 4. Vận dụng cao: 5. Phần 2. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số. Phần 3. Mũ và lôgarit. Phần 4. Nguyên hàm, tích phân và ứng dụng. Phần 5. Số phức. Phần 6. Khối đa diện và khối tròn xoay. Phần 7. Phương pháp tọa độ trong không gian. Phần 8. Ôn tập kiến thức Toán 11.
50 dạng toán ôn thi tốt nghiệp THPT 2020 môn Toán
Tài liệu gồm 1368 trang, được biên soạn bởi tập thể quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Toán, phát triển 50 dạng toán dựa trên đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2 do Bộ Giáo dục và Đào tạo công bố, giúp học sinh khối 12 ôn tập để chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán năm học 2019 – 2020. Khái quát nội dung tài liệu 50 dạng toán ôn thi tốt nghiệp THPT 2020 môn Toán: Dạng 1. Hoán vị – chỉnh hợp – tổ hợp. Dạng 2. Cấp số cộng và cấp số nhân. Dạng 3. Giải bất phương trình mũ và lôgarit. Dạng 4. Tính thể tích khối lăng trụ đứng. Dạng 5. Hàm số mũ – lôgarít. Dạng 6. Nguyên hàm. Dạng 7. Thể tích khối đa diện (khối chóp). Dạng 8. Khối nón – trụ – cầu (công thức thể tích khối nón). Dạng 9. Diện tích mặt cầu. Dạng 10. Tính đơn điệu của hàm số. Dạng 11. Rút gọn biểu thức lôgarit đơn giản. Dạng 12. Khối nón – trụ – cầu. Dạng 13. Tìm điểm cực trị của hàm số. Dạng 14. Khảo sát và vẽ đồ thị hàm số. Dạng 15. Tiệm cận của đồ thị hàm số. Dạng 16. Bất phương trình logarit. Dạng 17. Sự tương giao đồ thị. Dạng 18. Nguyên hàm – tích phân. Dạng 19. Xác định số phức liên hợp khi đã biết số phức. Dạng 20. Số phức (tìm phần thực của tổng hai số phức). Dạng 21. Tìm điểm biểu diễn của số phức. Dạng 22. Xác định hình chiếu của điểm lên mặt phẳng. Dạng 23. Xác định tâm bán kính diện tích thể tích của mặt cầu. Dạng 24. Phương trình mặt phẳng. Dạng 25. Phương trình đường thẳng. [ads] Dạng 26. Góc giữa đường thẳng và mặt phẳng. Dạng 27. Cực trị hàm số khi biết bảng biến thiên hoặc đồ thị hàm số. Dạng 28. Giá trị lớn nhất – giá trị nhỏ nhất của hàm số. Dạng 29. Logarit có tham số. Dạng 30. Sự tương giao của hai đồ thị. Dạng 31. Bất phương trình mũ – logarit. Dạng 32. Mặt nón – mặt trụ – mặt cầu. Dạng 33. Nguyên hàm – tích phân. Dạng 34. Ứng dụng tích phân (tính diện tích hình phẳng). Dạng 35. Số phức. Dạng 36. Các bài toán liên quan đến nghiệm của số phức. Dạng 37. Phương trình đường thẳng trong Oxyz. Dạng 38. Viết phương trình đường thẳng. Dạng 39. Tổ hợp – xác suất(xác suất của biến cố). Dạng 40. Khoảng cách giữa hai đường thẳng chéo nhau. Dạng 41. Tính đơn điệu của hàm số. Dạng 42. Hàm số mũ hàm số logarits (bài toán thực tế). Dạng 43. Xác định các hệ số của hàm số nhất biến. Dạng 44. Khối nón trụ cầu. Dạng 45. Tích phân liên quan đến hàm ẩn. Dạng 46. Tìm số nghiệm của phương trình. Dạng 47. Tiệm cận của đồ thị hàm số. Dạng 48. GTLN – GTNN của hàm phụ thuộc tham số trên đoạn. Dạng 49. Thể tích khối đa diện (thể tích khối đa diện được cắt ra từ một khối khác). Dạng 50. Phương trình mũ – lôgarit.
Phương pháp chọn đại diện giải toán trắc nghiệm - Trần Tuấn Anh
Tài liệu gồm 36 trang, được biên soạn bởi thầy giáo Trần Tuấn Anh, hướng dẫn phương pháp chọn đại diện để giải các bài toán trắc nghiệm trong chương trình Toán 12, giúp học sinh ôn thi THPT Quốc gia môn Toán. Các bài toán trong tài liệu được chọn lọc từ các đề thi thử THPT Quốc gia môn Toán, được giải bằng hai cách: cách thông thường và cách chọn đại diện, nhằm giúp bạn đọc thấy được ưu điểm của phương pháp chọn đại diện trong giải toán. Khái quát nội dung tài liệu phương pháp chọn đại diện giải toán trắc nghiệm – Trần Tuấn Anh: Việc tìm ra đáp án đúng cho bài toán trắc nghiệm là rất khác so với việc trình bày bài giải tự luận. Giải quyết bài toán tự luận, chúng ta phải trình bày lời giải bài toán theo suy luận của mình, sao cho người đọc hiểu đúng, dựa trên nền tảng kiến thức chuẩn mực. Với bài thi toán trắc nghiệm, học sinh không cần trình bày lời giải và có nhiều cách tiếp cận. Không cần xét mọi trường hợp, có thể một vài trường hợp cũng đủ chọn được đáp án vì loại được các khả năng khác. Các suy luận không cần diễn giải, viết ra, chỉ viết ý chính để tìm ra đáp án khi nháp. [ads] Nếu bài toán đúng với mọi giá trị x thuộc K thì nó sẽ đúng với một giá trị xác định x0 thuộc K. 1. Một số bài toán về hàm số. 2. Một số bài toán về hàm số lũy thừa, hàm số mũ và hàm số lôgarit. 3. Một số bài toán về nguyên hàm và tích phân. 4. Một số bài toán về số phức. 5. Một số bài toán hình học không gian. 6. Một số bài toán hình học giải tích. 7. Một số bài toán khác.
Tóm tắt lý thuyết và bài tập trắc nghiệm bài toán tối ưu
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm bài toán tối ưu, một chủ đề rất quan trọng trong chương trình Toán THPT. Bên cạnh tài liệu bài toán tối ưu dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm bài toán tối ưu: A. BÀI TẬP TRẮC NGHIỆM B. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM