Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 7 năm 2018 - 2019 phòng GDĐT Đông Hưng - Thái Bình

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi học sinh giỏi Toán 7 năm 2018 – 2019 phòng GD&ĐT Đông Hưng – Thái Bình; đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 7 năm 2018 – 2019 phòng GD&ĐT Đông Hưng – Thái Bình : + Cho tam giác ABC có góc A tù. Kẽ AD AB và AD = AB (tia AD nằm giữa hai tia AB và AC). Kẽ AE AC và AE = AC (tia AE nằm giữa hai tia AB và AC). Gọi M là trung điểm của BC. Chứng minh rằng: AM DE. + Cho tam giác ABC, O là trung điểm của BC. Từ B kẻ BD vuông góc với AC (D thuộc AC). Từ C kẻ CE vuông góc với AB (E thuộc AB). a. Chứng minh rằng: OD = 1/2BC. b. Trên tia đối của tia DE lấy điểm N, trên tia đối của tia ED lấy điểm M sao cho DN = EM. Chứng minh rằng: Tam giác OMN là tam giác cân. + Không dùng máy tính, hãy tính giá trị của biểu thức S.

Nguồn: toanmath.com

Đọc Sách

Đề giao lưu HSG Toán 7 năm 2018 - 2019 phòng GDĐT Chí Linh - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm 2018 – 2019 phòng GD&ĐT Chí Linh – Hải Dương; đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2018 – 2019 phòng GD&ĐT Chí Linh – Hải Dương : + Cho tam giác ABC có ba góc nhọn, điểm M là trung điểm của BC. Trên nửa mặt phẳng chứa điểm C bờ là đường thẳng AB vẽ đoạn thẳng AE vuông góc với AB và AE = AB. Trên nửa mặt phẳng chứa điểm B bờ là đường thẳng AC vẽ đoạn thẳng AD vuông góc với AC và AD = AC. a) Chứng minh: BD = CE. b) Trên tia đối của tia MA lấy điểm N sao cho MN = MA. Chứng minh: BAC ACN 180. c) Gọi I là giao điểm của DE và AM. Tính tỉ số AD + IE DI + AE. + Cho a, b, c, d là các số tự nhiên khác 0. Chứng minh rằng: S = a b c d a b c a b d b c d a c d có giá trị không phải là số tự nhiên. + Cho hàm số f(x) xác định với mọi x R. Biết rằng với mọi x khác 0 ta đều có.
Đề giao lưu HSG Toán 7 năm 2018 - 2019 phòng GDĐT Tam Dương - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm 2018 – 2019 phòng GD&ĐT Tam Dương – Vĩnh Phúc; đề thi có đáp án + lời giải + thang điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2018 – 2019 phòng GD&ĐT Tam Dương – Vĩnh Phúc : + Ba lớp cùng mua một số gói tăm từ thiện, lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5; 6; 7 nhưng sau đó chia theo tỉ lệ 4; 5; 6 nên có một lớp nhận nhiều hơn dự định 4 gói tăm. Tính tổng số gói tăm mà ba lớp đã mua. + Cho hàm số. Tìm các giá trị của a biết rằng đồ thị hàm số đi qua điểm M. + Cho ABC vuông tại A. Kẻ AH vuông góc với BC (H thuộc BC). Tia phân giác của các góc HAC và HAB lần lượt cắt BC ở D và E. Tính độ dài đoạn thẳng DE biết AB cm AC cm.
Đề học sinh giỏi huyện Toán 7 năm 2018 - 2019 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 7 năm 2018 – 2019 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề học sinh giỏi Toán 7 cấp trường năm 2018 - 2019 trường THCS Sông Trí - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát đội tuyển học sinh giỏi môn Toán 7 cấp trường năm học 2018 – 2019 trường THCS Sông Trí, thị xã Kỳ Anh, tỉnh Hà Tĩnh; đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề học sinh giỏi Toán 7 cấp trường năm 2018 – 2019 trường THCS Sông Trí – Hà Tĩnh : + Cho tam giác ABC có ba góc nhọn, trung tuyến AM. Trên nửa mặt phẳng bờ là đường thẳng AB chứa điểm C vẽ đoạn thẳng AE ⊥ AB sao cho AE = AB. Trên nửa mặt phẳng bờ là đường thẳng AC chứa điểm B vẽ đoạn thẳng AD ⊥ AC sao cho AD = AC. a) Chứng minh BD = CE b) Trên tia đối của tia MA lấy điểm N sao cho MN = MA. Chứng minh ADE CAN c) Cọi K là giao điểm của DE và AM. Chứng minh 2 2 2 2 AD KE 1. + Trong cuộc thi tìm kiếm tài năng toán học gồm có 20 câu hỏi. Mỗi câu trả lời đúng được 10 điểm, câu sai bị trừ đi 3 điểm. Một bạn học sinh đạt 148 điểm. Hỏi bạn đó trả lời đúng bao nhiêu câu hỏi. + Tính chu vi của một tam giác cân biết độ dài hai cạnh là 2,4 cm và 5 cm.