Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 1 Toán 12 năm 2019 - 2020 THPT Phú Xuyên B - Hà Nội

giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát lần 1 Toán 12 năm 2019 – 2020 trường THPT Phú Xuyên B – Hà Nội, kỳ thi nhằm kiểm tra chất lượng môn Toán thường xuyên đối với học sinh khối 12. Đề khảo sát lần 1 Toán 12 năm 2019 – 2020 THPT Phú Xuyên B – Hà Nội mã đề 118 gồm 06 trang với 50 câu, học sinh có 90 phút để làm bài, đề thi có đáp án mã đề 118, 211, 317, 412. Trích dẫn đề khảo sát lần 1 Toán 12 năm 2019 – 2020 THPT Phú Xuyên B – Hà Nội : + Cho hàm sốy = x^3 – 3(m + 1)x^2 + 3(7m – 3)x. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số không có cực trị. Số phần tử của S là? + Có bao nhiêu giá trị của tham số m để giá trị lớn nhất của hàm số y = (x – m^2 – 2)/(x – m) trên đoạn [0;4] bằng −1. [ads] + Chị Lan có 400 triệu đồng mang đi gửi tiết kiệm ở hai loại kì hạn khác nhau đều theo thể thức lãi kép. Chị gửi 200 triệu đồng theo kì hạn quý với lãi suất 2,1% một quý, 200 triệu đồng còn lại chị gửi theo kì hạn tháng với lãi suất 0,73% một tháng. Sau khi gửi được đúng 1 năm, chị rút ra một nửa số tiền ở loại kì hạn theo quý và gửi vào loại kì hạn theo tháng. Hỏi sau đúng 2 năm kể từ khi gửi tiền lần đầu, chị Lan thu được tất cả bao nhiêu tiền lãi (làm tròn đến hàng nghìn)? + Một sợi dây có chiều dài 28m được cắt thành hai đoạn để làm thành một hình vuông và một hình tròn. Tính chiều dài (theo đợn vị mét) của đoạn dây làm thành hình vuông được cắt ra sao cho tổng diện tích của hình vuông và hình tròn là nhỏ nhất? + 9. Đường thẳng y = k(x + 2) + 3 cắt đồ thị hàm số y = x^3 + 3x^2 – 1 (1) tại 3 điểm phân biệt, tiếp tuyến với đồ thị (1) tại 3 giao điểm đó lại cắt nhau tại 3 điểm tạo thành một tam giác vuông. Mệnh đề nào dưới đây là đúng?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Đại học lần 1 năm 2020 môn Toán trường THPT Thái Phúc - Thái Bình
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi thử Đại học lần 1 năm học 2019 – 2020 môn Toán trường THPT Thái Phúc, tỉnh Thái Bình; đề thi bám sát cấu trúc đề minh họa tốt nghiệp THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi thử Đại học lần 1 năm 2020 môn Toán trường THPT Thái Phúc – Thái Bình : + Độ giảm huyết áp của một bệnh nhân được đo bởi công thức G(x) = 0,025.x^2.(30 – x) trong đó x (mg) và x > 0 là liều lượng thuốc cần tiêm cho bệnh nhân. Để huyết áp giảm nhiều nhất thì cần tiêm cho bệnh nhân một liều lượng bằng? + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Mặt bên SAB là tam giác đều nằm trong mặt phẳng vuông góc với đáy. Tính diện tích mặt cầu ngoại tiếp hình chóp trên theo a. + Cho hình nón có độ dài đường cao bằng 8, một mặt phẳng đi qua đỉnh của hình nón và cắt hình nón theo thiết diện là tam giác đều có diện tích bằng 253. Thể tích của khối nón giới hạn bởi hình nón nói trên bằng?
Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 3 trường THPT Triệu Sơn 1 - Thanh Hóa
Ngày … tháng 06 năm 2020, trường THPT Triệu Sơn 1, tỉnh Thanh Hóa tổ chức kỳ thi thử tốt nghiệp THPT môn Toán năm học 2019 – 2020 lần thi thứ ba. Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 3 trường THPT Triệu Sơn 1 – Thanh Hóa gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán lần 3 trường THPT Triệu Sơn 1 – Thanh Hóa : + Cho hàm số y = (-x + 1)/(2x – 1) có đồ thị là (C), đường thẳng d: y = x + m. Với mọi m ta luôn có d cắt (C) tại hai điểm phân biệt A và B. Gọi k1 và k2 lần lượt là hệ số góc của các tiếp tuyến của (C) tại A và B. Tìm m để tồng giá trị k1 + k2 đạt giá trị lớn nhất. + Một cái búa hình trụ có bán kính R, cán búa hình trụ có bán kính r. Cán búa được lắp xuyên qua búa sao cho trục của bán và trục của búa cắt nhau và vuông góc với nhau. Tính thể tích phần chung của cán búa và búa. [ads] + Cho tứ diện ABCD có cạnh AB, BC, BD vuông góc với nhau từng đôi một. Khẳng định nào sau đây đúng? A. Góc giữa CD và (ABD) là góc CBD. B. Góc giữa AC và (BCD) là góc ACB. C. Góc giữa AD và (ABC) là góc ADB. D. Góc giữa AC và (ABD) là góc CBA.
Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 3 trường THPT Ninh Bình - Bạc Liêu - Ninh Bình
Thứ Hai ngày 15 tháng 06 năm 2020, trường THPT Ninh Bình – Bạc Liêu, tỉnh Ninh Bình tổ chức kỳ thi thử tốt nghiệp THPT môn Toán lớp 12 năm học 2019 – 2020 lần thi thứ ba. Đề thi thử tốt nghiệp THPT 2020 môn Toán 12 lần 3 trường THPT Ninh Bình – Bạc Liêu – Ninh Bình mã đề 101 gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian làm bài 90 phút, câu trúc đề thi bám sát đề minh họa tốt nghiệp THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo, đề thi có đáp án. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán 12 lần 3 trường THPT Ninh Bình – Bạc Liêu – Ninh Bình : + Cho hình hộp ABCD.A0B0C0D0 có A0B vuông góc với mặt phẳng đáy (ABCD), góc giữa AA0 và (ABCD) bằng 45◦. Khoảng cách từ A đến các đường thẳng BB0 và DD0 bằng a. Góc giữa mặt (BB0C0C) và mặt phẳng (CC0D0D) bằng 60◦. Thể tích khối hộp đã cho là? + Cho hình trụ có đường cao h = 5 cm, bán kính đáy r = 3 cm. Xét mặt phẳng (P) song song với trục của hình trụ, cách trục 2 cm. Tính diện tích S thiết diện của hình trụ với (P). [ads] + Xếp ngẫu nhiên 10 học sinh trường THPT Ninh Bình – Bạc Liêu (tỉnh Ninh Bình) gồm 2 học sinh lớp 11A, 3 học sinh lớp 11B và 5 học sinh lớp 11C thành một hàng ngang. Xác suất để không có học sinh nào của cùng một lớp đứng cạnh nhau là?
Đề thi thử tốt nghiệp THPT 2020 môn Toán trường THPT chuyên Hùng Vương - Gia Lai
Sáng Chủ Nhật ngày 14 tháng 06 năm 2020, trường THPT chuyên Hùng Vương, tỉnh Gia Lai tổ chức kỳ thi thử tốt nghiệp THPT môn Toán năm học 2019 – 2020. Đề thi thử tốt nghiệp THPT 2020 môn Toán trường THPT chuyên Hùng Vương – Gia Lai được biên soạn bám sát cấu trúc đề tham khảo tốt nghiệp THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo, đề thi có đáp án mã đề 001. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán trường THPT chuyên Hùng Vương – Gia Lai : + Cho một đa giác đều có 18 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập hợp các tam giác có các đỉnh là các đỉnh của đa giác đều trên. Tính xác suất P để chọn được một tam giác từ tập X là tam giác cân nhưng không phải tam giác đều. + Cho hình trụ có chiều cao bằng 5. Biết rằng một mặt phẳng không vuông góc với đáy và cắt hai mặt đáy của hình trụ theo hai dây cung AB, CD mà AB = CD = 5, diện tích tứ giác ABCD bằng 30 (minh họa như hình dưới). Diện tích xung quanh hình trụ đã cho bằng? [ads] + Bộ Y tế phát đi một thông tin tuyên truyền về phòng chống dịch COVID-19. Thông tin này lan truyền đến người dân theo công thức P(t) = 1/(1 + ae^-kt) với P(t) là tỉ lệ dân số nhận được thông tin vào thời điểm t và a, k là các hằng số dương. Cho a = 3, k = 1/2 với t đo bằng giờ. Hỏi cần phải ít nhất bao lâu để hơn 90% dân số nhận được thông tin?