Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 9 năm 2019 sở GDĐT Bắc Ninh

THCS. giới thiệu đến thầy, cô và các em nội dung đề khảo sát chất lượng Toán 9 năm 2019 sở GD&ĐT Bắc Ninh, kỳ thi được diễn ra vào ngày 23 tháng 02 năm 2019 nhằm đánh giá chất lượng môn Toán của học sinh lớp 9, đồng thời giúp các em rèn luyện thường xuyên để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 năm học 2019 – 2020. Đề khảo sát chất lượng Toán 9 năm 2019 sở GD&ĐT Bắc Ninh gồm hai phần: phần trắc nghiệm gồm 06 câu, chiếm 30% số điểm, phần tự luận gồm 04 câu, chiếm 70% số điểm, học sinh làm bài thi môn Toán trong 90 phút, đây cũng sẽ là cấu trúc đề Toán tuyển sinh vào lớp 10 năm học 2019 – 2020 mà sở Giáo dục và Đào tạo Bắc Ninh sẽ sử dụng. [ads] Trích dẫn đề khảo sát chất lượng Toán 9 năm 2019 sở GD&ĐT Bắc Ninh : + Một doanh nghiệp tư nhân chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe Honda Future Fi với chi phí mua vào một chiếc là 27 triệu đồng và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất? Tại sao? + Cho nửa đường tròn (O) đường kính AB = 2R và dây cung AC = R. Gọi K là trung điểm của dây cung CB, qua B dựng tiếp tuyến Bx với (O) cắt tia OK tại D. a) Chứng minh rằng tam giác ABC vuông. b) Chứng minh rằng DC là tiếp tuyến của đường tròn (O). c) Kẻ CH vuông góc với AB tại H. Gọi I là trung điểm của cạnh CH. Tiếp tuyến tại A của đường tròn (O) cắt tia BI tại E. Chứng minh rằng ba điểm E, C, D thẳng hàng. + Cho hàm số y = (m – 3)x – 2m + 1 có đồ thị là đường thẳng d. a) Tìm m để d đi qua điểm M(1;2). b) Tìm m để d cắt trục Ox, Oy lần lượt tại hai điểm A và B sao cho tam giác OAB cân.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra lớp 9 môn Toán tháng 9 năm 2019 2020 trường THCS Bế Văn Đàn Hà Nội
Nội dung Đề kiểm tra lớp 9 môn Toán tháng 9 năm 2019 2020 trường THCS Bế Văn Đàn Hà Nội Bản PDF - Nội dung bài viết Đề kiểm tra lớp 9 môn Toán tháng 9 năm 2019 2020 trường THCS Bế Văn Đàn Hà Nội Đề kiểm tra lớp 9 môn Toán tháng 9 năm 2019 2020 trường THCS Bế Văn Đàn Hà Nội Trong kỳ kiểm tra tập trung môn Toán hàng tháng tại trường THCS Bế Văn Đàn, nhằm đánh giá chất lượng học tập của học sinh lớp 9, đề kiểm tra tháng 9 năm học 2019 – 2020 đã được tổ chức. Đề bao gồm 05 bài toán dạng tự luận, thời gian làm bài là 90 phút. Trong đề kiểm tra của trường THCS Bế Văn Đàn – Hà Nội, có một bài toán liên quan đến Vịnh Hạ Long - một trong những kì quan thiên nhiên nổi tiếng thế giới. Bài toán giải quyết vấn đề vận tốc của hai xe ô tô đi hướng ngược chiều đến khi gặp nhau, với thông tin về vận tốc của mỗi xe và khoảng cách giữa Hà Nội và Vịnh Hạ Long. Bài toán khác trong đề kiểm tra liên quan đến bể bơi tiêu chuẩn, yêu cầu học sinh tính thể tích nước trong bể dựa trên chiều dài, chiều rộng, và chiều cao của bể. Đề còn đưa ra một bài toán về chứng minh bất đẳng thức cho các số thực dương a, b, c. Đề kiểm tra lớp 9 môn Toán tháng 9 năm 2019 – 2020 tại trường THCS Bế Văn Đàn đặt ra các bài toán thú vị và mang tính ứng dụng cao, giúp học sinh rèn luyện kỹ năng giải quyet bài toán và logic, phát triển tư duy toán học.
Đề khảo sát lớp 9 môn Toán năm 2018 2019 phòng GD ĐT Hoàn Kiếm Hà Nội
Nội dung Đề khảo sát lớp 9 môn Toán năm 2018 2019 phòng GD ĐT Hoàn Kiếm Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát môn Toán lớp 9 năm 2018 - 2019 Đề khảo sát môn Toán lớp 9 năm 2018 - 2019 Ngày 09/05/2019, Phòng Giáo dục và Đào tạo quận Hoàn Kiếm, Hà Nội đã tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 năm học 2018 - 2019. Kỳ thi này nhằm mục đích đánh giá năng lực học tập của học sinh trước khi họ bước vào kỳ thi tuyển sinh vào lớp 10 THPT năm học 2019 - 2020. Đề khảo sát Toán lớp 9 năm 2018 - 2019 của phòng GD&ĐT Hoàn Kiếm - Hà Nội đã được biên soạn theo cấu trúc đề thi tuyển sinh vào lớp 10 THPT của sở GD&ĐT Hà Nội. Đề thi gồm 1 trang với 5 bài toán tự luận, và học sinh được cấp 120 phút để hoàn thành bài thi. Một số bài toán trong đề khảo sát: Giải bài toán về ô tô và xe máy đi từ A đến B, biết vận tốc của ô tô lớn hơn vận tốc của xe máy. Học sinh cần tìm vận tốc của mỗi xe. Chứng minh đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt với mọi giá trị của m. Tìm giá trị của m để thỏa mãn một điều kiện cho trước. Phân tích các đặc điểm của tứ giác ABCD nội tiếp trong tam giác ABC, với ba đường cao đi qua trung tâm H. Bài toán đặt ra các mệnh đề phải chứng minh. Đề khảo sát Toán lớp 9 năm 2018 - 2019 của phòng GD&ĐT Hoàn Kiếm - Hà Nội là cơ hội để học sinh thử sức và chuẩn bị tốt cho kỳ thi tuyển sinh sắp tới. Hy vọng rằng các em sẽ cố gắng hết mình và đạt kết quả tốt trong kỳ thi này!
Đề khảo sát chất lượng lớp 9 môn Toán năm 2018 2019 phòng GD ĐT Ba Đình Hà Nội
Nội dung Đề khảo sát chất lượng lớp 9 môn Toán năm 2018 2019 phòng GD ĐT Ba Đình Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát chất lượng môn Toán lớp 9 năm 2018-2019 phòng GD ĐT Ba Đình Hà Nội Đề khảo sát chất lượng môn Toán lớp 9 năm 2018-2019 phòng GD ĐT Ba Đình Hà Nội Ngày 07 tháng 05 năm 2019, phòng Giáo dục và Đào tạo quận Ba Đình, Hà Nội đã tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 năm học 2018 - 2019. Kỳ thi nhằm mục đích giúp học sinh rèn luyện thường xuyên để củng cố và nâng cao kiến thức Toán THCS, chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019 - 2020. Đề khảo sát chất lượng Toán lớp 9 năm 2018-2019 phòng GD&ĐT Ba Đình - Hà Nội được biên soạn dưới dạng tự luận, bao gồm 1 trang với 6 bài toán. Học sinh được cấp 90 phút (không tính thời gian giám thị coi thi phát đề) để hoàn thành bài thi khảo sát chất lượng môn Toán lớp 9. Trích dẫn đề khảo sát chất lượng Toán lớp 9 năm 2018-2019 phòng GD&ĐT Ba Đình - Hà Nội: Một phòng họp có 300 ghế ngồi, được xếp thành một số hàng có số ghế bằng nhau. Buổi họp có 378 người tham dự, ban tổ chức đã kê thêm 3 hàng ghế và mỗi hàng phải xếp thêm 1 ghế, mới đủ chỗ ngồi. Hỏi lúc đầu phòng họp có bao nhiêu hàng ghế và mỗi hàng ghế có bao nhiêu ghế, biết số hàng ghế ban đầu không vượt quá 20. Cho phương trình: x^2 - (x - 3)x - m + 2 = 0 (x là ẩn số). (a) Chứng minh rằng phương trình luôn có nghiệm với mọi giá trị của m. (b) Tìm m để phương trình có ít nhất một nghiệm dương. Cho đường tròn (O;R) và dây BC cố định (BC < 2R), BF là đường kính. A là điểm di chuyển trên cung lớn BC (A khác B, C) sao cho tam giác ABC có ba góc nhọn. Các đường cao AD và CE của tam giác ABC cắt nhau tại H. (1) Chứng minh tứ giác AEDC là tứ giác nội tiếp. (2) Chứng minh HF đi qua trung điểm G của đoạn thẳng AC. (3) Chứng minh AF/sinDEC không đổi. (4) Cho BC = 1,5R; gọi I là hình chiếu của G trên AB. Hãy tính bán kính đường tròn ngoại tiếp tam giác IBC theo R.
Đề khảo sát đợt 3 lớp 9 môn Toán năm 2018 2019 phòng GD ĐT Kim Thành Hải Dương
Nội dung Đề khảo sát đợt 3 lớp 9 môn Toán năm 2018 2019 phòng GD ĐT Kim Thành Hải Dương Bản PDF - Nội dung bài viết Đề khảo sát đợt 3 lớp 9 môn Toán năm 2018 2019 phòng GD ĐT Kim Thành Hải Dương Đề khảo sát đợt 3 lớp 9 môn Toán năm 2018 2019 phòng GD ĐT Kim Thành Hải Dương Sytu xin giới thiệu đến các em học sinh khối lớp 9 đề khảo sát đợt 3 Toán lớp 9 năm 2018 - 2019 phòng GD&ĐT Kim Thành - Hải Dương. Đề này có cấu trúc giống với một đề thi tuyển sinh vào lớp 10 môn Toán, nhằm giúp các em học sinh lớp 9 rèn luyện và chuẩn bị cho kỳ thi quan trọng sắp tới. Đề khảo sát đợt 3 Toán lớp 9 năm 2018 - 2019 phòng GD&ĐT Kim Thành - Hải Dương gồm 01 trang với 05 bài toán dạng đề tự luận, thời gian làm bài là 120 phút. Trích dẫn một số câu hỏi trong đề khảo sát: Cho phương trình \(x^2 - 2mx + m^2 - m + 1 = 0\). Tìm \(m\) để phương trình có 2 nghiệm \(x_1, x_2\) thỏa mãn: \(x_1^2 + 2mx_2 = 9\). Khoảng cách giữa hai bến sống A và B là 50km. Một ca nô đi từ bến A đến bến B, nghỉ 20 phút ở bến B rồi quay lại bến A. Tính vận tốc riêng của ca nô, biết vận tốc của dòng nước là 4km/h. Từ điểm A nằm ngoài đường tròn (O;R), vẽ hai tiếp tuyến AB, AC và cát tuyến AMN sao cho cung MBN nhỏ hơn cung MCN. Chứng minh rằng: a) Bốn điểm B, H, O, C cùng nằm trên một đường tròn. b) \(R^2 = OH \times OL\). c) \(INC = ANB\). Hy vọng rằng đề khảo sát này sẽ giúp các em học sinh lớp 9 nắm vững kiến thức và chuẩn bị tốt cho các kỳ thi sắp tới.