Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu lớp 9 môn Toán chủ đề sự xác định đường tròn, tính chất đối xứng của đường tròn

Nội dung Tài liệu lớp 9 môn Toán chủ đề sự xác định đường tròn, tính chất đối xứng của đường tròn Bản PDF Tài liệu lớp 9 môn Toán với chủ đề sự xác định đường tròn và tính chất đối xứng của đường tròn rất đầy đủ và chi tiết. Đây là tài liệu gồm 26 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập liên quan đến chủ đề này trong chương trình môn Toán lớp 9.

Trong phần tóm tắt lý thuyết, tài liệu giới thiệu về định nghĩa của đường tròn, vị trí tương đối của điểm M và đường tròn, cách xác định một đường tròn, đường tròn ngoại tiếp tam giác và tính chất đối xứng của đường tròn. Đây là những kiến thức cơ bản nhưng quan trọng giúp học sinh hiểu rõ về đường tròn.

Phần bài tập và các dạng toán trong tài liệu cũng rất phong phú. Cụ thể, có các dạng toán như chứng minh các điểm cùng nằm trên một đường tròn, xác định tâm đường tròn đi qua 3 điểm, xác định vị trí tương đối của một điểm với một đường tròn, tính bán kính của đường tròn ngoại tiếp tam giác và chứng minh đẳng thức.

Để giúp học sinh hiểu rõ hơn về cách giải các dạng toán này, tài liệu cung cấp các cách giải chi tiết và dễ hiểu. Ví dụ, để chứng minh các điểm cùng nằm trên một đường tròn, học sinh có thể sử dụng cách chứng minh các điểm cùng cách đều một điểm cho trước nào đó. Điều này giúp học sinh nắm vững phương pháp giải quyết vấn đề và áp dụng vào các bài tập khác.

Cuối cùng, tài liệu còn đi kèm bài tập trắc nghiệm và bài tập tự luyện để học sinh có thể tự kiểm tra và rèn luyện kỹ năng. Đồng thời, file WORD dành cho giáo viên cũng được cung cấp để giúp trong việc giảng dạy và kiểm tra kiến thức của học sinh.

Tóm lại, tài liệu này là công cụ hữu ích giúp học sinh nắm vững kiến thức về đường tròn và rèn luyện kỹ năng giải các dạng toán liên quan. Việc cung cấp đầy đủ và chi tiết nội dung giúp tăng cường hiểu biết của học sinh và cải thiện kết quả học tập.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề hàm số bậc nhất và các bài toán liên quan
Tài liệu gồm 64 trang, tổng hợp kiến thức cần nhớ, phân dạng và hướng dẫn giải các dạng bài tập chuyên đề hàm số bậc nhất và các bài toán liên quan, giúp học sinh học tốt chương trình Đại số 9 chương 2. 1. NHẮC LẠI VÀ BỔ SUNG CÁC KHÁI NIỆM VỀ HÀM SỐ. + Dạng toán 1. Tìm điều kiện xác định của hàm số. + Dạng toán 2. Tính giá trị hàm số khi cho giá trị của ẩn. + Dạng toán 3. Xác định điểm thuộc (không thuộc) đồ thị hàm số. + Dạng toán 4. Sự đồng biến, nghịch biến của hàm số. 2. HÀM SỐ BẬC NHẤT VÀ ĐỒ THỊ HÀM SỐ BẬC NHẤT. + Dạng toán 1. Hàm số bậc nhất. Sự đồng biến và nghịch biến của hàm số bậc nhất. + Dạng toán 2. Đồ thị hàm số y = ax và hệ số góc của đường thẳng y = ax. + Dạng toán 3. Đồ thị hàm số y = ax + b (a khác 0). + Dạng toán 4. Hệ số góc của đường thẳng. Đường thẳng song song và đường thẳng cắt nhau. 3. TỔNG HỢP MỘT SỐ BÀI TOÁN LIÊN QUAN ĐẾN HÀM SỐ BẬC NHẤT TRONG CÁC ĐỀ TUYỂN SINH VÀO 10 MÔN TOÁN. 4. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI.
Bài giảng căn bậc hai, căn bậc ba - Nguyễn Tài Chung
Tài liệu gồm 37 trang, được biên soạn bởi thầy giáo Nguyễn Tài Chung, gồm tóm tắt lý thuyết và bài tập chọn lọc chuyên đề căn bậc hai, căn bậc ba, giúp học sinh học tốt chương trình Toán 9. 1 Căn bậc hai. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 2 Căn bậc hai và đẳng thức √A2 = |A|. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 3 Liên hệ giữa phép nhân và phép khai phương. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 4 Liên hệ giữa phép chia và phép khai phương. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. [ads] 5 Bảng căn bậc hai. A Tóm tắt lý thuyết. B Bài tập. 6 Biến đổi đơn giản biểu thức chứa căn bậc hai. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 7 Rút gọn biểu thức chứa căn bậc hai. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 8 Căn bậc ba. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. Ôn tập chương I. A Đề bài. B Lời giải.
Chuyên đề căn bậc hai và căn bậc ba - Bùi Đức Phương
Tài liệu gồm 40 trang, được biên soạn bởi thầy giáo Bùi Đức Phương, tổng hợp kiến thức và hướng dẫn phương pháp giải một số dạng toán quan trọng thuộc các chủ đề: căn bậc hai và căn bậc ba, trong chương trình môn Toán lớp 9. Bài 1 . Căn bậc hai. Dạng 1 . Tìm căn bậc hai của một số. Phương pháp giải: bám sát vào định nghĩa và tính chất của căn bậc hai. Dạng 2 . So sánh biểu thức không sử dụng máy tính. Phương pháp giải: sử dụng các tính chất của căn bậc hai. Dạng 3 . Biểu diễn hình học căn thức sử dụng thước kẻ và compa. Phương pháp giải: sử dụng các tính chất về dựng hình, đặc biệt là dựng hình vuông, tam giác vuông cho biết độ dài. Bài 2 . Căn thức bậc hai. Dạng 4 . Tìm điều kiện xác định của căn bậc hai. Phương pháp giải: + Một biểu thức a = √f(x) xác định (hay có nghĩa) khi và chỉ khi f(x) ≥ 0. + Một biểu thức b = 1/√f(x) xác định (hay có nghĩa) khi và chỉ khi f(x) > 0. Dạng 5 . Rút gọn các căn thức đơn giản. Phương pháp giải: sử dụng các tính chất của căn bậc hai. [ads] Bài 3 . Liên hệ giữa phép nhân, phép chia & phép khai phương. Dạng 6 . Áp dụng phép nhân, phép chia, phép khai phương để tính giá trị biểu thức. Phương pháp giải: sử dụng các tính chất phép nhân, phép chia, phép khai phương để tính giá trị biểu thức. Bài 4 . Biến đổi biểu thức chứa căn thức bậc hai. Dạng 7 . Các dạng bài tập biến đổi cơ bản biểu thức chứa căn thức bậc hai. Phương pháp giải: sử dụng các tính chất phép nhân, phép chia, phép khai phương để tính giá trị biểu thức. Dạng 8 . Biến đổi biểu thức chứa căn bậc hai. Phương pháp giải: sử dụng các tính chất phép nhân, phép chia, phép khai phương để tính giá trị biểu thức. Bài 5 . Căn bậc ba. Dạng 9 . Các dạng bài tập liên quan căn bậc ba. Phương pháp giải: áp dụng định nghĩa và các tính chất của căn bậc ba. Ôn tập chương I
Giải bài toán bằng cách lập phương trình, hệ phương trình - Phạm Huy Huân
Tài liệu gồm 29 trang được biên soạn bởi thầy giáo Phạm Huy Huân, hướng dẫn giải bài toán bằng cách lập phương trình, hệ phương trình; giúp học sinh học tốt chương trình Toán 9 và ôn thi tuyển sinh vào lớp 10 môn Toán. Khái quát nội dung tài liệu giải bài toán bằng cách lập phương trình, hệ phương trình – Phạm Huy Huân: A. Các bước giải bài toán bằng cách lập phương trình Bước 1: Lập hệ phương trình. + Chọn các ẩn số và đặt điều kiện, đơn vị thích hợp cho các ẩn. + Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết. + Lập phương trình biểu thị sự tương quan giữa các đại lượng. Bước 2: Giải phương trình (hệ phương trình) vừa tìm được. Bước 3: Đối chiếu điều kiện và trả lời. [ads] B. Các dạng toán điển hình Dạng 1: Bài toán về quan hệ giữa các số. Dạng 2: Bài toán chuyển động. + Toán chuyển động không có sự tham gia của dòng nước. + Toán chuyển động có sự tham gia của dòng nước. Dạng 3: Toán về năng suất – Khối lượng công việc. Dạng 4: Toán về phần trăm (%). Dạng 5: Bài toán về công việc làm chung làm riêng. Dạng 6: Bài toán liên quan đến hình học. Dạng 7: Toán liên hệ thực tế.