Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 10 môn Toán cấp trường năm 2018 2019 trường Thuận Thành 2 Bắc Ninh

Nội dung Đề thi HSG lớp 10 môn Toán cấp trường năm 2018 2019 trường Thuận Thành 2 Bắc Ninh Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 10 trường Thuận Thành 2 năm 2018 - 2019 Đề thi HSG Toán lớp 10 trường Thuận Thành 2 năm 2018 - 2019 Trường THPT Thuận Thành 2 Bắc Ninh tổ chức kỳ thi chọn học sinh giỏi Toán lớp 10 nhằm thành lập đội tuyển học sinh giỏi Toán. Đề thi bao gồm 6 bài toán, học sinh có thời gian 150 phút để làm bài. Các em học sinh đạt điểm cao trong kỳ thi sẽ được tuyên dương trước toàn trường, góp phần làm tấm gương học tập cho các bạn khác. Họ cũng sẽ được bồi dưỡng để tham dự kỳ thi học sinh giỏi Toán cấp tỉnh. Đề thi gồm các câu hỏi khó, đa dạng về các khái niệm và phương pháp giải toán. Ví dụ như tìm nghiệm của phương trình bậc 2, tìm điểm trên mặt phẳng tọa độ, khảo sát và vẽ đồ thị hàm số. Kỳ thi không chỉ đánh giá kiến thức mà còn khuyến khích sự sáng tạo, logic và tư duy của các em học sinh. Chúc các em đạt kết quả cao và tiếp tục phấn đấu trên con đường học tập!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG lớp 10 môn Toán năm 2018 2019 trường THPT Nam Tiền Hải Thái Bình
Nội dung Đề thi HSG lớp 10 môn Toán năm 2018 2019 trường THPT Nam Tiền Hải Thái Bình Bản PDF - Nội dung bài viết Đề thi HSG lớp 10 Toán năm 2018-2019 trường THPT Nam Tiền Hải Thái Bình Đề thi HSG lớp 10 Toán năm 2018-2019 trường THPT Nam Tiền Hải Thái Bình Đề thi HSG Toán lớp 10 năm 2018 - 2019 trường THPT Nam Tiền Hải - Thái Bình được thiết kế theo định dạng tự luận, bao gồm 01 trang với 05 bài toán khó. Học sinh được cấp 180 phút để hoàn thành bài thi, với ngày thi diễn ra vào ngày 06 tháng 03 năm 2019. Dưới đây là một số câu hỏi trích dẫn từ đề thi HSG Toán lớp 10 năm 2018 - 2019 trường THPT Nam Tiền Hải - Thái Bình: 1. Trong hệ trục tọa độ Oxy, hãy tìm phương trình của đường cao AD và phân giác trong CE của tam giác ABC với A(4;-1), B(1;5), C(-4;-5). 2. Với B(0;1), C(3;0), đường phân giác trong góc BAC của tam giác ABC cắt trục Oy tại M(0;-7/3), chia tam giác thành hai phần có tỉ lệ diện tích 10/11 (với phần chứa điểm B có diện tích nhỏ hơn phần chứa điểm C). Hãy tính T = a^2 + b^2 với A(a;b) và a < 0. 3. Hãy chứng minh rằng: a.sinA + b.sinB + c.sinC = 2(ma^2 + mb^2 + mc^2)/3R với mọi tam giác ABC (a = BC, b = AC, c = AB; ma, mb, mc lần lượt là độ dài đường trung tuyến hạ từ A, B, C; R bán kính đường tròn ngoại tiếp tam giác ABC). Đề thi này tập trung vào việc áp dụng các kiến thức về hình học và tính toán trong giải quyết các bài toán phức tạp, đòi hỏi học sinh phải có kiến thức chắc chắn và khả năng suy luận logic tốt. Qua đó, đề thi giúp học sinh phát triển kỹ năng tư duy, khả năng giải quyết vấn đề và xử lý tình huống.
Đề thi học sinh giỏi lớp 10 môn Toán năm 2018 2019 trường Đan Phượng Hà Nội
Nội dung Đề thi học sinh giỏi lớp 10 môn Toán năm 2018 2019 trường Đan Phượng Hà Nội Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 10 năm 2018 - 2019 trường Đan Phượng Hà Nội Đề thi học sinh giỏi Toán lớp 10 năm 2018 - 2019 trường Đan Phượng Hà Nội Sytu xin giới thiệu đến các bạn nội dung đề thi học sinh giỏi môn Toán lớp 10 năm 2018 - 2019 của trường Đan Phượng - Hà Nội. Đề thi được tổ chức nhằm tuyển chọn những học sinh xuất sắc khối lớp 10 với kiến thức Toán để bổ sung vào đội tuyển học sinh giỏi Toán của trường. Đề thi Toán lớp 10 năm 2018 - 2019 tại trường Đan Phượng - Hà Nội có cấu trúc bao gồm 5 bài toán được biên soạn theo hình thức tự luận, nhằm đánh giá khả năng tư duy logic và giải quyết vấn đề của học sinh. Thang điểm của đề thi là 20 và thời gian làm bài là 120 phút. Các em sẽ được tuyên dương, khen thưởng trước toàn trường nếu đạt kết quả cao. Trích dẫn một số câu hỏi trong đề thi: 1. Trong mặt phẳng tọa độ Oxy, cho hình thang ABCD với diện tích bằng 14 đơn vị diện tích và các điểm đặc biệt A(1;1), H(-1/2;0). Viết phương trình tổng quát của đường thẳng AB biết điểm D có hoành độ dương và nằm trên đường thẳng d: 5x – y + 1 = 0. 2. Cho parabol (P): y = 2x^2 + 6x - 1. Tìm giá trị của k để đường thẳng Δ: y = (k + 6)x + 1 cắt parabol (P) tại hai điểm phân biệt M, N sao cho trung điểm của MN nằm trên đường thẳng d: y = -2x + 3/2. 3. Tam giác ABC là tam giác đều có cạnh bằng a. Lấy các điểm N, M, P trên các cạnh sao cho BN = a/3, CM = 2a/3, AP = x (0 < x < a). Tìm giá trị của x để đường thẳng AN vuông góc với đường thẳng PM. Đề thi còn nhiều câu hỏi khác thú vị và thách thức đòi hỏi các em phải áp dụng kiến thức, kỹ năng Toán một cách linh hoạt và sáng tạo.
Đề thi HSG lớp 10 môn Toán năm 2018 2019 trường Phùng Khắc Khoan Hà Nội
Nội dung Đề thi HSG lớp 10 môn Toán năm 2018 2019 trường Phùng Khắc Khoan Hà Nội Bản PDF - Nội dung bài viết Đề thi HSG lớp 10 môn Toán trường Phùng Khắc Khoan Hà Nội Đề thi HSG lớp 10 môn Toán trường Phùng Khắc Khoan Hà Nội Để tìm ra các em học sinh lớp 10 có năng khiếu và thành tích xuất sắc trong môn Toán, trường THPT Phùng Khắc Khoan đã tổ chức kỳ thi chọn học sinh giỏi cấp trường. Đề thi HSG Toán lớp 10 năm 2018 – 2019 của trường gồm 6 bài toán được biên soạn theo hình thức tự luận. Thời gian làm bài là 150 phút, không tính thời gian giám thị coi thi phát đề. Đề thi cung cấp lời giải chi tiết và thang chấm điểm cho từng bài toán. Trích dẫn đề thi HSG Toán lớp 10 năm 2018 – 2019 trường Phùng Khắc Khoan Hà Nội: + Bài toán 1: Tìm m để đường thẳng y = -2x – m cắt đồ thị của hàm số y = x^2 + x – 1 tạo ra hai điểm phân biệt A, B sao cho tam giác OAB vuông tại gốc tọa độ O. + Bài toán 2: Xác định hệ thức liên hệ giữa cạnh AB và AC của tam giác ABC để AM và CN vuông góc với nhau, với điều kiện MC = -2MB và NA = -1/2.NB. + Bài toán 3: Tính giá trị của tanB trong tam giác ABC có cạnh BC = a, CA = b, BA = c và diện tích S = b^2 - (a - c)^2.