Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cấp huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Nam Trực Nam Định

Nội dung Đề HSG cấp huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Nam Trực Nam Định Bản PDF - Nội dung bài viết Đề HSG cấp huyện lớp 9 môn Toán năm 2022 - 2023 Đề HSG cấp huyện lớp 9 môn Toán năm 2022 - 2023 Chào mừng đến với Đề HSG cấp huyện môn Toán lớp 9 năm học 2022 - 2023 từ phòng Giáo dục và Đào tạo huyện Nam Trực, tỉnh Nam Định. Đề thi này được thiết kế để kiểm tra và đánh giá năng lực của học sinh giỏi trong môn Toán. Trong đề thi này, các em sẽ đối diện với các bài toán thú vị và có tính logic cao. Ví dụ, một trong những câu hỏi đòi hỏi học sinh chứng minh rằng một số tự nhiên m,n thỏa mãn điều kiện nhất định. Bài toán khác yêu cầu học sinh tìm ra cách thực hiện một trò chơi cụ thể trên bảng số và đưa ra kết luận cuối cùng. Đề thi còn chứa các câu hỏi về hình học và đại số, giúp học sinh phát triển kỹ năng tư duy logic và kỹ năng giải quyết vấn đề. Việc giải các bài toán này không chỉ giúp học sinh rèn luyện khả năng toán học mà còn là cơ hội để họ phát triển tư duy sáng tạo và logic. Chúng tôi hy vọng rằng, qua việc tham gia vào Đề HSG cấp huyện lớp 9 môn Toán, các em sẽ có cơ hội thử thách bản thân, nâng cao kiến thức và kỹ năng toán học của mình. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi Toán THCS năm 2022 2023 sở GD ĐT Vĩnh Long
Nội dung Đề thi chọn học sinh giỏi Toán THCS năm 2022 2023 sở GD ĐT Vĩnh Long Bản PDF - Nội dung bài viết Đề thi chọn học sinh giỏi Toán THCS năm 2022 - 2023 sở GD&ĐT Vĩnh Long Đề thi chọn học sinh giỏi Toán THCS năm 2022 - 2023 sở GD&ĐT Vĩnh Long Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến mọi người đề thi chọn học sinh giỏi Toán cấp tỉnh lớp 9 THCS năm học 2022 - 2023 do Sở Giáo dục và Đào tạo tỉnh Vĩnh Long tổ chức. Kỳ thi sẽ diễn ra vào ngày 19 tháng 03 năm 2023. Đề thi sẽ bao gồm các câu hỏi đa dạng, có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Một số câu hỏi mẫu trong đề thi bao gồm: + Cho đường tròn có đường kính AB và điểm C là điểm bất kỳ trên đường tròn. Tiếp tuyến tại C cắt tiếp tuyến tại A và B lần lượt tại P và Q. Nhiệm vụ của em là chứng minh một số tính chất của tam giác POQ và APBQ. + Đề thi cũng sẽ đưa ra các bài toán về hình vuông và phương trình. Ví dụ: một bài toán đưa ra hình vuông ABCD có độ dài đường chéo bằng 1 và yêu cầu chứng minh chu vi tứ giác MNPQ không nhỏ hơn 2. Đây là những ví dụ cụ thể chỉ ra sự đa dạng và thú vị của đề thi. Hy vọng rằng đề thi sẽ giúp các em học sinh rèn luyện và phát triển kỹ năng Toán của mình.
Đề thi HSG lớp 9 môn Toán cấp quận năm 2022 2023 phòng GD ĐT Hải An Hải Phòng
Nội dung Đề thi HSG lớp 9 môn Toán cấp quận năm 2022 2023 phòng GD ĐT Hải An Hải Phòng Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 9 cấp quận năm 2022 - 2023 Hải An, Hải Phòng Đề thi HSG Toán lớp 9 cấp quận năm 2022 - 2023 Hải An, Hải Phòng Sytu xin gửi đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 cấp quận năm học 2022 - 2023 của phòng Giáo dục và Đào tạo UBND quận Hải An, thành phố Hải Phòng. Đề thi này bao gồm đáp án, hướng dẫn giải chi tiết và thang chấm điểm. Đề thi gồm nhiều câu hỏi khó và phức tạp như: Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn (O). Qua A lần lượt kẻ các tiếp tuyến AB, AC đến đường tròn (O) (B, C là các tiếp điểm. Lấy điểm D thuộc đường tròn (O) sao cho BD // AO. Đường thẳng AD cắt đường tròn (O) tại điểm thứ hai E. Gọi M là trung điểm của AC. a) Chứng minh rằng ME là tiếp tuyến của đường tròn (O) b) Gọi T là giao điểm của các đường thẳng ME, BC, I là giao điểm của các đường thẳng DE, BC. Chứng minh OI AT c) Qua E kẻ đường thẳng song song với đường thẳng AB cắt các đường thẳng BC, BD lần lượt tại các điểm P và Q. Chứng minh rằng: PQ = PE Trên bảng ta viết 3 số 1 2 2 2. Mỗi bước ta chọn 2 số a b bất kỳ trên bảng, xóa chúng đi và thay bởi 2 số 2 2 a ba b và giữ nguyên số còn lại. Hỏi sau một số hữu hạn bước, ta có thể thu được 3 số 1 2 1 2 2 2 trên bảng được không? Cho các số nguyên dương abc thỏa mãn 222 abc. Chứng minh rằng ab chia hết cho: abc. Đề thi này đòi hỏi sự kiên nhẫn, quan sát kỹ lưỡng và kỹ năng giải quyết vấn đề linh hoạt của các thí sinh. Chúc các em học sinh lớp 9 đạt kết quả cao trong kỳ thi HSG môn Toán cấp quận năm học 2022 - 2023 này!
Đề thi chọn học sinh giỏi lớp 9 môn Toán năm 2022 2023 sở GD ĐT Quảng Trị
Nội dung Đề thi chọn học sinh giỏi lớp 9 môn Toán năm 2022 2023 sở GD ĐT Quảng Trị Bản PDF - Nội dung bài viết Đề thi chọn học sinh giỏi Toán lớp 9 năm 2022 – 2023 sở GD&ĐT Quảng Trị Đề thi chọn học sinh giỏi Toán lớp 9 năm 2022 – 2023 sở GD&ĐT Quảng Trị Chào quý thầy, cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến mọi người đề thi chọn học sinh giỏi văn hóa cấp tỉnh môn Toán lớp 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Trị. Kỳ thi sẽ diễn ra vào thứ Tư ngày 15 tháng 03 năm 2023. Trích dẫn Đề thi chọn học sinh giỏi Toán lớp 9 năm 2022 – 2023 sở GD&ĐT Quảng Trị: 1. Cho a, b, c là các số nguyên đôi một khác nhau. Chứng minh rằng trong ba phương trình sau, có ít nhất một phương trình có nghiệm: x² – 2ax + bc + 1 = 0, x² – 2bx + ca + 1 = 0, x² – 2cx + ab + 1 = 0. 2. Cho các số nguyên x, y thỏa mãn 2×2 − y2 = 1. Chứng minh xy(x2 − y2) chia hết cho 40. 3. Một giải cầu lông có n (n ≥ 2) vận động viên tham gia thi đấu theo thể thức vòng tròn một lượt (hai vận động viên bất kỳ thi đấu với nhau đúng một trận, không có kết quả hòa). Chứng minh rằng tổng các bình phương số trận thắng và tổng các bình phương số trận thua của các vận động viên là bằng nhau. 4. Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O), AD là đường cao (D thuộc BC). Gọi E, F lần lượt là hình chiếu của D trên AC và AB. a) Chứng minh tứ giác BCEF nội tiếp. b) Đường tròn đường kính AD cắt (O) tại điểm thứ hai là M (M khác A). Chứng minh MD là phân giác của góc FMC. c) Chứng minh đường thẳng MD, đường trung trực của BC và đường trung trực của EF đồng quy.
Đề thi học sinh giỏi lớp 9 môn Toán năm 2022 2023 sở GD ĐT TP Hồ Chí Minh
Nội dung Đề thi học sinh giỏi lớp 9 môn Toán năm 2022 2023 sở GD ĐT TP Hồ Chí Minh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 năm 2022 - 2023 TP.HCM Đề thi học sinh giỏi Toán lớp 9 năm 2022 - 2023 TP.HCM Sytu xin gửi đến các thầy cô giáo và các em học sinh lớp 9 bộ đề thi chọn học sinh giỏi cấp thành phố môn Toán năm học 2022 - 2023 của Sở Giáo dục và Đào tạo TP.Hồ Chí Minh. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm; sẽ diễn ra vào thứ Ba ngày 14 tháng 03 năm 2023. Trích đề thi học sinh giỏi Toán lớp 9 năm 2022 - 2023 TP.HCM: Cho phương trình \(x^3 + mx^2 - x + m - m^2 = 0\) với tham số m. Chứng minh rằng phương trình luôn có một nghiệm \(x = 1 - m\) với mọi giá trị của tham số m. Tìm tất cả các giá trị của tham số m để phương trình có ba nghiệm phân biệt \(x_1\), \(x_2\), \(x_3\) sao cho \(x_1^2 + x_2^2 + x_3^2 = 3\). Cho tam giác ABC không cân nội tiếp đường tròn (O) có đường cao AD; AM là đường kính của đường tròn (O); K là hình chiếu của B lên AM. Chứng minh rằng DK vuông góc AC. Chứng minh rằng AEFC là tứ giác nội tiếp. Chứng minh rằng HE = 2IO với H là trực tâm của tam giác AEC và I là tâm đường tròn ngoại tiếp tứ giác AEFC. Tìm tất cả các số tự nhiên x, y và số nguyên tố p sao cho \(p^x = y^4 + 64\). Đây là những câu hỏi thú vị và chất lượng trong đề thi học sinh giỏi Toán lớp 9 năm 2022 - 2023 TP.HCM. Chúc các em học sinh ôn tập và thi đạt kết quả cao trong kỳ thi sắp tới!