Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi lớp 8 môn Toán năm 2022 2023 sở GD ĐT Nam Định

Nội dung Đề thi chọn học sinh giỏi lớp 8 môn Toán năm 2022 2023 sở GD ĐT Nam Định Bản PDF Sytu xin gửi đến quý thầy cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán cấp tỉnh của năm học 2022-2023 do Sở Giáo dục và Đào tạo tỉnh Nam Định tổ chức. Kỳ thi này sẽ diễn ra vào thứ Sáu, ngày 10 tháng 03 năm 2023, và đề thi sẽ có đáp án, lời giải chi tiết cũng như thang điểm.

Một số câu hỏi trong đề thi bao gồm:
- Tính số đo của góc FMN trong tam giác ABC khi các đường cao AD, BM, CN của tam giác cắt nhau tại điểm H, và điểm E là điểm đối xứng của H qua O.
- Chứng minh rằng ba điểm KLR là thẳng hàng trong tam giác ABC với điểm G là trung điểm của IQ.
- Giải bài toán liên quan đến việc rút thẻ từ một hộp có 99 thẻ màu vàng, 100 thẻ màu đỏ và 101 thẻ màu xanh, hỏi sau mỗi lần rút thẻ và thay thế, người ta có thể nhận được tất cả các thẻ cùng màu hay không.
- Tìm đa thức f(x) và tính giá trị của f(2023) và tìm giá trị của số tự nhiên n để biểu thức 64/3^n + 2^n/n^2 là một số chính phương.

Đề thi chọn học sinh giỏi Toán lớp 8 năm 2022-2023 của Sở GD&ĐT Nam Định sẽ đánh giá kỹ năng Toán học và logic của các em học sinh, và hy vọng rằng các em sẽ đạt kết quả tốt trong kỳ thi này. Hy vọng rằng thông tin trên sẽ giúp quý thầy cô và các em học sinh chuẩn bị tốt cho đề thi sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề giao lưu học sinh giỏi Toán 8 năm 2018 - 2019 phòng GDĐT thành phố Thái Nguyên
Đề giao lưu học sinh giỏi Toán 8 năm 2018 – 2019 phòng GD&ĐT thành phố Thái Nguyên gồm 03 trang với 08 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút.
Đề giao lưu HSG Toán 8 năm 2017 - 2018 phòng GDĐT Chí Linh - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu HSG Toán 8 năm 2017 – 2018 phòng GD&ĐT Chí Linh – Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 8 năm 2017 – 2018 phòng GD&ĐT Chí Linh – Hải Dương : + Cho hình thoi ABCD cạnh a có. Hai đường chéo AC và BD cắt nhau tại O, E thuộc tia BC sao cho, AE cắt CD tại F. Trên hai đoạn AB và AD lần lượt lấy hai điểm G và H sao cho CG song song với FH. a) Tính diện tích hình thoi ABCD theo a. b) Chứng minh rằng. c) Tính số đo góc GOH. + Đa thức P(x) bậc 4 có hệ số bậc cao nhất là 1. Biết P(1) = 0; P(3) = 0; P(5) = 0. Tính giá trị của biểu thức: Q = P(-2) + 7P(6). + Cho 3 số nguyên tố x < y < z liên tiếp thỏa mãn là một số nguyên tố. Chứng minh rằng cũng là một số nguyên tố.
Đề Olympic Toán 8 năm 2017 - 2018 phòng GDĐT Kinh Môn - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề Olympic Toán 8 năm 2017 – 2018 phòng GD&ĐT Kinh Môn – Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề Olympic Toán 8 năm 2017 – 2018 phòng GD&ĐT Kinh Môn – Hải Dương : + Cho O là trung điểm của đoạn AB. Trên cùng một nửa mặt phẳng có bờ là đường thẳng AB vẽ tia Ax, By cùng vuông góc với AB. Trên tia Ax lấy điểm C (khác A), qua O kẻ đường thẳng vuông góc với OC cắt tia By tại D. 1) Chứng minh AB2 = 4 AC.BD. 2) Kẻ OM vuông góc CD tại M. Chứng minh AC = CM. 3) Từ M kẻ MH vuông góc AB tại H. Chứng minh BC đi qua trung điểm MH. + Cho đa thức f(x) = x3 – 3×2 + 3x – 4. Với giá trị nguyên nào của x thì giá trị của đa thức f(x) chia hết cho giá trị của đa thức x2 + 2. + Cho x, y, z là các số dương thỏa mãn x + y + z = 1. Tìm giá trị nhỏ nhất của biểu thức: P.
Đề học sinh giỏi Toán 8 năm 2017 - 2018 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề học sinh giỏi Toán 8 năm 2017 – 2018 phòng GD&ĐT Kim Thành – Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi Toán 8 năm 2017 – 2018 phòng GD&ĐT Kim Thành – Hải Dương : + Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD. Chứng minh: a) Tứ giác BEDF là hình bình hành. b) CH.CD = CB.CK. c) AB.AH + AD.AK = AC2. + Cho biểu thức M. a) Tìm điều kiện của x để M xác định và rút gọn M. b) Tìm tất các giá trị của x để M > 0. + Xác định một đa thức bậc ba f(x) không có hạng tử tự do sao cho: f(x) – f(x – 1) = x2.