Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 1 Toán 12 năm học 2018 - 2019 trường THPT Đoàn Thượng - Hải Dương

Đề khảo sát lần 1 Toán 12 năm học 2018 – 2019 trường THPT Đoàn Thượng – Hải Dương mã đề 246 gồm 07 trang với 50 câu hỏi trắc nghiệm khách quan, thí sinh có 90 phút (không tính thời gian giao đề) để hoàn thành đề thi, kiến thức đề bao quát chương trình Toán 10, Toán 11 và nội dung Toán 12 đã học – điều này hoàn toàn phù hợp với định hướng về kỳ thi THPT Quốc gia năm 2019 mà Bộ Giáo dục và Đào tạo đã đề ra trước đó. Trích dẫn đề khảo sát lần 1 Toán 12 năm học 2018 – 2019 trường THPT Đoàn Thượng – Hải Dương : + Hình lăng trụ tam giác đều không có tính chất nào sau đây: A. Các cạnh bên bằng nhau và hai đáy là tam giác đều. B. Cạnh bên vuông góc với hai đáy và hai đáy là tam giác đều C. Tất cả các cạnh đều bằng nhau. D. Các mặt bên là các hình chữ nhật. [ads] + Có 16 tấm bìa ghi 16 chữ “HỌC”, “ĐỂ”, “BIẾT”, “HỌC”, “ĐỂ”, “LÀM”, “HỌC”, “ĐỂ”, “CHUNG”, “SỐNG”, “HỌC”, “ĐỂ”, “TỰ”, “KHẲNG”, “ĐỊNH”, “MÌNH”. Một người xếp ngẫu nhiên 16 tấm bìa cạnh nhau. Tính xác suất để xếp các tấm bìa được dòng chữ “ HỌC ĐỂ BIẾT HỌC ĐỂ LÀM HỌC ĐỂ CHUNG SỐNG HỌC ĐỂ TỰ KHẲNG ĐỊNH MÌNH”. + Xét đồ thị (C) của hàm số y = x^3 + 3ax + b với a, b là các số thực. Gọi M, N là hai điểm phân biệt thuộc (C) sao cho tiếp tuyến với (C) tại hai điểm đó có hệ số góc bằng 3. Biết khoảng cách từ gốc tọa độ tới đường thẳng MN bằng 1, giá trị nhỏ nhất của a^2 + b^2 bằng?

Nguồn: toanmath.com

Đọc Sách

Đề KSCL lớp 12 môn Toán lần 4 năm 2020 2021 trường THPT Thành Nhân TP HCM
Nội dung Đề KSCL lớp 12 môn Toán lần 4 năm 2020 2021 trường THPT Thành Nhân TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng môn Toán lớp 12 lần 4 năm học 2020 – 2021 trường THPT Thành Nhân – thành phố Hồ Chí Minh; đề thi có đáp án mã đề 101. Trích dẫn đề KSCL Toán lớp 12 lần 4 năm 2020 – 2021 trường THPT Thành Nhân – TP HCM : + Cho đồ thị hàm số 3 2 6 5 y f x ax bx cx cắt đường thẳng d y g x tại ba điểm A B C với xA 3, yB 0, xC 3 như hình vẽ. Gọi H K lần lượt là hình chiếu của A C lên trục Ox. Biết rằng 169 25 ABH BCK S S và diện tích phần hình phẳng (tô đậm) giới hạn bởi đồ thị y f x y g x x x B x 3 là 775 972 S. Giá trị f(4) bằng? + Cho hình nón có đỉnh S và chiều cao bằng a 2. Lấy hai điểm M N nằm trên đường tròn đáy sao cho tam giác SMN là tam giác đều và có diện tích bằng 2 3 3 4 a (tham khảo hình vẽ). Mặt phẳng SMN chia mặt xung quanh nón thành hai phần. Tính diện tích phần bề mặt xung quanh của hình nón có đáy là cung nhỏ MN (phần tô đậm). + Trong không gian Oxyz, cho hai điểm A(4;5;1), B(12;-1;5) và mặt phẳng 10 0 P z. Xét mặt cầu S đi qua điểm A, đồng thời tiếp xúc cả hai mặt phẳng P và Oxy. Lấy điểm M nằm trên mặt cầu S. Độ dài đoạn thẳng BM ngắn nhất bằng? File WORD (dành cho quý thầy, cô):