Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán biến cố và xác suất của biến cố thường gặp

Tài liệu gồm 57 trang được biên soạn bởi thầy giáo Nguyễn Bảo Vương tuyển tập 175 câu hỏi và bài toán trắc nghiệm biến cố và xác suất của biến cố thường gặp trong đề thi Trung học Phổ thông Quốc gia môn Toán, có đáp án và lời giải chi tiết, các câu hỏi và bài toán được phân chia thành các dạng bài riêng biệt tùy thuộc vào đặc điểm và phương pháp giải bài toán đó, tài liệu giúp học sinh học tốt chủ đề tổ hợp và xác suất (Đại số và Giải tích 11 chương 2) và ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán sắp tới. Mục lục tài liệu các dạng toán biến cố và xác suất của biến cố thường gặp: Phần A . Câu hỏi Dạng toán 1 . Mô tả không gian mẫu và mối liên hệ giữa các biến cố. Dạng toán 2 . Các dạng toán về xác suất. Dạng toán 2.1 Sử dụng định nghĩa cổ điển về xác xuất – quy về bài toán đếm (Trang 3). Dạng toán 2.1.1 Bài toán tính xác suất sử dụng định nghĩa cổ điển bằng cách tính trực tiếp số phần tử thuận lợi cho biến cố (Trang 3). A. Một số bài toán chọn vật, chọn người (Trang 3). B. Một số bài toán liên quan đến chữ số (Trang 8). C. Một số bài toán liên quan đến yếu tố sắp xếp (Trang 11). D. Một số bài toán liên quan đến xúc sắc (Trang 12). E. Một số bài toán liên quan đến hình học (Trang 13). F. Một số bài toán đề thi (Trang 15). Dạng toán 2.1.2 Tính xác suất sử dụng định nghĩa cổ điển bằng phương pháp gián tiếp (Trang 15). Dạng toán 2.2 Sử dụng quy tắc tính xác suất (Trang 18). Dạng toán 2.2.1 Sử dụng quy tắc cộng (Trang 18). Dạng toán 2.2.2 Sử dụng quy tắc nhân (Trang 19). Dạng toán 2.2.3 Sử dụng quy tắc cộng và quy tắc nhân (Trang 20). [ads] Phần B . Lời giải tham khảo Dạng toán 1 . Mô tả không gian mẫu và mối liên hệ giữa các biến cố. Dạng toán 2 . Các dạng toán về xác suất. Dạng toán 2.1 Sử dụng định nghĩa cổ điển về xác xuất – quy về bài toán đếm (Trang 23). Dạng toán 2.1.1 Bài toán tính xác suất sử dụng định nghĩa cổ điển bằng cách tính trực tiếp số phần tử thuận lợi cho biến cố (Trang 23). A. Một số bài toán chọn vật, chọn người (Trang 23). B. Một số bài toán liên quan đến chữ số (Trang 30). C. Một số bài toán liên quan đến yếu tố sắp xếp (Trang 36). D. Một số bài toán liên quan đến xúc sắc (Trang 38). E. Một số bài toán liên quan đến hình học (Trang 40). F. Một số bài toán đề thi (Trang 43). Dạng toán 2.1.2 Tính xác suất sử dụng định nghĩa cổ điển bằng phương pháp gián tiếp (Trang 44). Dạng toán 2.2 Sử dụng quy tắc tính xác suất (Trang 49). Dạng toán 2.2.1 Sử dụng quy tắc cộng (Trang 49). Dạng toán 2.2.2 Sử dụng quy tắc nhân (Trang 51). Dạng toán 2.2.3 Sử dụng quy tắc cộng và quy tắc nhân (Trang 53).

Nguồn: toanmath.com

Đọc Sách

Chuyên đề tính xác suất theo định nghĩa cổ điển Toán 10 KNTTvCS
Tài liệu gồm 94 trang, bao gồm lý thuyết, hướng dẫn giải bài tập trong sách giáo khoa, các dạng bài tập tự luận và hệ thống bài tập trắc nghiệm chuyên đề tính xác suất theo định nghĩa cổ điển trong chương trình SGK Toán 10 Kết Nối Tri Thức Với Cuộc Sống (KNTTvCS), có đáp án và lời giải chi tiết. Bài 26 – 27 . Biến cố và định nghĩa cổ điển của xác suất. 1. Lý thuyết. 2. Hệ thống bài tập tự luận. Dạng 1. Mô tả biến cố, không gian mẫu. Dạng 2. Mối liên hệ giữa các biến cố. Dạng 3. Xác định không gian mẫu và biến cố. + Phương pháp 1. Liệt kê các phần tử của không gian mẫu và biến cố rồi đếm. + Phương pháp 2. Sử dụng các quy tắc đếm, các kiến thức về hoán vị, chỉnh hợp, tổ hợp để xác định số phần tử của không gian mẫu và biến cố. Dạng 4. Tính xác suất theo định nghĩa cổ điển. + Tính xác suất theo thống kê ta sử dụng công thức. P(A) = n/N. + Tính xác suất của biến cố theo định nghĩa cổ điển ta sử dụng công thức. P(A) = n(A)/n(O) = |OA|/|O|. Dạng 5. Quy tắc tính xác suất. 3. Hệ thống bài tập trắc nghiệm.
Bài giảng xác suất của biến cố
Tài liệu gồm 18 trang, tóm tắt lý thuyết trọng tâm, các dạng toán và bài tập chủ đề xác suất của biến cố, có đáp án và lời giải chi tiết, giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 2: Tổ Hợp Và Xác Suất. Tài liệu được biên soạn bởi nhóm tác giả: PGS.TS Lê Văn Hiện, Trần Minh Ngọc, Nguyễn Hồng Quân, Nguyễn Đình Hoàn, Lý Công Hiếu, Nguyễn Văn Vũ, Nguyễn Đỗ Chiến, Nguyễn Ngọc Chi, Nguyễn Văn Ái, Nguyễn Hoàng Việt, Nguyễn Thị Thắm, Nguyễn Vũ Minh, Phan Xuân Dương, Nguyễn Hữu Bắc. Kiến thức: + Hiểu được khái niệm biến cố và phân biệt được các biến cố giao, biến cố hợp, biến cố đối và biến cố độc lập. + HIểu được định nghĩa xác suất của biến cố và tính chất của xác suất. + Nắm vững công thức cộng xác suất và công thức nhân xác suất. Kĩ năng: + Tính được xác suất của biến cố trong các bài toán xác suất cổ điển. + Vận dụng quy tắc tính xác suất trong các bài toán thực tế. I. LÍ THUYẾT TRỌNG TÂM. II. CÁC DẠNG BÀI TẬP. + Dạng 1: Sử dụng định nghĩa cổ điển về xác suất. + Dạng 2: Các bài tập sử dụng quy tắc tính xác suất. III. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI.
Tài liệu chủ đề xác suất
Tài liệu gồm 52 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề xác suất, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 2. I. KIẾN THỨC TRỌNG TÂM 1) Phép thử và Không gian mẫu. 2) Biến cố. 3) Các phép toán với biến cố. 4) Xác suất của biến cố (định nghĩa cổ điển). 5) Các quy tắc tính xác suất. 6) Xác suất của biến cố đối. II. HỆ THỐNG VÍ DỤ MINH HỌA Dạng 1: Tính xác suất bằng định nghĩa cổ điển. Dạng 2: Tính xác suất thông qua biến cố đối. Dạng 3: Tính xác suất thông qua các quy tắc cộng và nhân. BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề tổ hợp và xác suất - Nguyễn Hoàng Việt
Tài liệu gồm 158 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, trình bày lý thuyết cần nhớ, phân loại và phương pháp giải toán, bài tập tự luyện và bài tập trắc nghiệm (có đáp án) chuyên đề tổ hợp và xác suất (Toán 11 phần Đại số và Giải tích chương 2). Chương 2 . TỔ HỢP VÀ XÁC SUẤT 1. §1 – Các quy tắc đếm cơ bản 1. A LÝ THUYẾT CẦN NHỚ 1. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN 1. + Dạng 1. Các bài toán chọn người và đồ vật cơ bản 1. + Dạng 2. Bài toán đếm số cơ bản 3. + Dạng 3. Nhóm bài toán sử dụng quy tắc bù trừ và bài toán khác 10. §2 – Hoán vị – chỉnh hợp – tổ hợp 22. A LÝ THUYẾT CẦN NHỚ 22. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN 23. + Dạng 1. Các bài toán liên quan đến hoán vị 23. + Dạng 2. Các bài toán liên quan đến hoán vị, tổ hợp và chỉnh hợp 32. + Dạng 3. Giải phương trình, bất phương trình, hệ phương trình 46. §3 – Nhị thức Newton 61. A LÝ THUYẾT CẦN NHỚ 61. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN 63. + Dạng 1. Tìm hệ số hoặc số hạng trong khai triển nhị thức Newton 63. + Dạng 2. Chứng minh hoặc tính tổng 82.. + Dạng 3. Dạng toán chẵn hoặc toàn lẻ 83. + Dạng 4. Nhóm bài toán tính tổng hoặc chứng minh dựa vào tính chất hoặc biến đổi (nâng cao) 86. + Dạng 5. Tìm hệ số hoặc số hạng dạng có điều kiện (kết hợp giữa dạng 1 & 2) 99. + Dạng 6. Tìm hệ số lớn nhất trong khai triển (a + bx)n 106. §4 – Biến cố và xác suất của biến cố 114. A Biến cố 114. B Xác suất 115. C Bài tập 117. + Dạng 1.Xác suất liên quan đến hình học 139. §5 – Các quy tắc tính xác suất 146. A Quy tắc cộng xác suất 146. B Quy tắc nhân xác suất 147.