Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Hoàn Kiếm Hà Nội

Nội dung Đề khảo sát lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Hoàn Kiếm Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Hoàn Kiếm Hà Nội Đề khảo sát lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Hoàn Kiếm Hà Nội Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán lớp 9 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo UBND quận Hoàn Kiếm, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 24 tháng 05 năm 2023. Đề thi bao gồm đáp án và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi từ đề khảo sát Toán lớp 9 năm 2022 - 2023 của phòng GD&ĐT Hoàn Kiếm - Hà Nội: Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một mảnh đất hình chữ nhật có chiều dài lớn hơn chiều rộng 12m và diện tích mảnh đất bằng 285m². Hãy tính chiều dài và chiều rộng của mảnh đất theo đơn vị mét? Một quả địa cầu hành chính có đường kính bằng 33cm. Tính diện tích bề mặt của quả địa cầu lấy pi = 3,14. Cho đường tròn O, R và một điểm M nằm ngoài đường tròn. Kẻ tiếp tuyến MA, MB với đường tròn O, R (A, B là các tiếp điểm). Vẽ đường kính AD, lấy I là trung điểm của đoạn thẳng MO, gọi C là hình chiếu vuông góc của I lên AO. Câu hỏi đề cập đến các chứng minh và tính chất của các hình học trong bài toán.

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Phú Yên
Ngày 30 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Phú Yên tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2020 – 2021. Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Phú Yên gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Đắk Lắk
Ngày 30 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Đắk Lắk tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2020 – 2021. Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Đắk Lắk gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề thi HSG tỉnh Toán 9 năm học 2020 - 2021 sở GDĐT Quảng Bình
Đề thi HSG tỉnh Toán 9 năm học 2020 – 2021 sở GD&ĐT Quảng Bình gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, đề thi có đáp án và lời giải chi tiết, kỳ thi được tổ chức vào ngày 08 tháng 12 năm 2020. Trích dẫn đề thi HSG tỉnh Toán 9 năm học 2020 – 2021 sở GD&ĐT Quảng Bình : + Số nguyên dương n được gọi là số điều hòa nếu tổng các bình phương của các ước dương của nó (kể cả 1 và n) bằng (n + 3)^2. Chứng minh rằng nếu pq (với p và q là các số nguyên tố khác nhau) là số điều hòa thì pq + 2 là số chính phương. + Trong mặt phẳng tọa độ Oxy, cho đường thẳng đi qua điểm A(1;4) và cắt các tia Ox, Oy lần lượt tại B và C (khác O). a. Viết phương trình đường thẳng (d) sao cho biểu thức OA + OB + OC đạt giá trị nhỏ nhất. b. Tính giá trị lớn nhất của biểu thức P = OB.OC/BC. + Tìm tất cả các cặp số nguyên dương (x;y) thỏa mãn.
Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Bình Định
Ngày 18 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Bình Định tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 năm học 2020 – 2021. Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Bình Định gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Bình Định : + Cho nửa đường tròn tâm O đường kính AB, trên nửa đường tròn (O) lấy điểm C sao cho cung BC nhỏ hơn cung AC, qua C dựng tiếp tuyến với đường tròn (O) cắt AB tại D. Kẻ CH vuông góc với AB (H thuộc AB), kẻ BK vuông góc với CD (K thuộc CD); CH cắt BK tại E. a) Chứng minh BK + BD < EC. b) Chứng minh BH.AD = AH.BD. + Cho tam giác ABC vuông cân tại A và M là điểm di động trên BC (M khác B và C). Hình chiếu của M lên AB, AC lần lượt là H và K. Gọi I là giao điểm của BK và CH. Chứng minh rằng đường thẳng IM luôn đi qua một điểm cố định. + Cho 69 số nguyên dương phân biệt không vượt quá 100. Chứng minh rằng có thể chọn ra từ 69 số đó 4 số sao cho trong chúng có 1 số bằng tổng của 3 số còn lại.