Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và bài tập hàm số và đồ thị Toán 8 Chân Trời Sáng Tạo

Tài liệu gồm 118 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bỉnh Khôi, phân dạng và tuyển chọn các bài tập chuyên đề hàm số và đồ thị trong chương trình môn Toán 8 bộ sách Chân Trời Sáng Tạo, có đáp án và lời giải chi tiết. MỤC LỤC : Chương 5 HÀM SỐ VÀ ĐỒ THỊ 2. Bài 1 KHÁI NIỆM HÀM SỐ 2. A. Trọng tâm kiến thức 2. 1 Khái niệm hàm số 2. 2 Giá trị của hàm số 2. B. Các dạng bài tập 2. + Dạng 1 Hàm số, bảng giá trị của hàm số 2. + Dạng 2 Tính giá trị của hàm số khi biết giá trị của biến số, và ngược lại 4. + Dạng 3 Vận dụng 6. C. Bài tập vận dụng 8. Bài 2 KHÁI NIỆM HÀM SỐ VÀ ĐỒ THỊ CỦA HÀM SỐ 14. A. Trọng tâm kiến thức 14. 1 Tọa độ của một điểm 14. 2 Xác định một điểm trên mặt phẳng tọa độ khi biết tọa độ của nó 14. 3 Đồ thị của hàm số 15. B. Các dạng bài tập 15. + Dạng 1 Đọc, biểu diễn toạ độ điểm trên mặt phẳng toạ độ 15. + Dạng 2 Vẽ đồ thị hàm số cho bởi bảng giá trị 17. + Dạng 3 Xác định khoảng cách giữa hai điểm trên mặt phẳng tọa độ 20. + Dạng 4 Điểm thuộc đồ thị, điểm không thuộc đồ thị của hàm số 22. C. Bài tập vận dụng 23. Bài 3 HÀM SỐ BẬC NHẤT y = ax + b (a khác 0) 37. A. Trọng tâm kiến thức 37. 1 Hàm số bậc nhất, bảng giá trị 37. 2 Đồ thị của hàm số bậc nhất 37. B. Các dạng bài tập 37. + Dạng 1 Hàm số bậc nhất, giá trị của hàm số bậc nhất 37. + Dạng 2 Vẽ đồ thị hàm số bậc nhất 39. + Dạng 3 Điểm thuộc đường thẳng Điểm không thuộc đường thẳng 45. + Dạng 4 Xác định đường thẳng 46. + Dạng 5 Vận dụng 47. C. Bài tập vận dụng 49. Bài 4 HỆ SỐ GÓC CỦA ĐƯỜNG THẲNG 60. A. Trọng tâm kiến thức 60. 1 Hệ số góc của đường thẳng 60. 2 Đường thẳng song song và đường thẳng cắt nhau 60. B. Các dạng bài tập 60. + Dạng 1 Nhận diện hệ số góc Xác định đường thẳng biết hệ số góc 60. + Dạng 2 Nhận dạng cặp đường thẳng song song với nhau, cặp đường thẳng cắt nhau, cặp đường thẳng. vuông góc với nhau 62. + Dạng 3 Bài toán tham số liên quan đến hệ số góc của đường thẳng 64. + Dạng 4 Xác định đường thẳng với quan hệ song song 65. + Dạng 5 Xác định đường thẳng với quan hệ vuông góc 66. C. Bài tập vận dụng 68. LUYỆN TẬP CHUNG 77. A. Hàm số bậc nhất 77. B. Tìm hệ số góc của đường thẳng 82. C. Xác định vị trí tương đối giữa hai đường thẳng 83. D. Tìm m để đồ thị hàm số thoả mãn điều kiện về vị trí tương đối 90. ÔN TẬP CHƯƠNG V 102. A. Bài tập trắc nghiệm 102. B. Bài tập tự luận 108.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề diện tích tam giác
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT Diện tích tam giác bằng nửa tích của một cạnh với chiều cao tương ứng. Lưu ý: + Nếu hai tam giác có một cạnh bằng nhau thì tỉ số diện tích hai tam giác đó bằng tỉ số các chiều cao tương ứng. + Nếu hai tam giác có một đường cao bằng nhau thì tỉ số diện tích hai tam giác đó bằng tỉ số các cạnh tương ứng. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính toán, chứng minh về diện tích tam giác. Phương pháp giải: Sử dụng công thức tính diện tích tam giác. Dạng 2. Tính độ dài đoạn thẳng bằng cách sử dụng công thức tính diện tích tam giác. Dạng 3. Sử dụng công thức tính diện tích để chứng minh các hệ thức. Phương pháp giải: Phát hiện quan hệ về diện tích trong hình rồi sử dụng các công thức tính diện tích. Dạng 4. Tìm vị trí của một điểm để thỏa mãn một đẳng thức về diện tích. Phương pháp giải: Dùng công thức tính diện tích dẫn đến điều kiện về vị trí điểm, thường liên quan đến khoảng cách từ một điểm đến một đường thẳng. Dạng 5. Tìm diện tích lớn nhất hoặc nhỏ nhất của một hình. Phương pháp giải: Để tìm diện tích lớn nhất hoặc nhỏ nhất cùa một hình, ta có thể sử dụng mối quan hệ giữa đường vuông góc và đường xiên. B. PHIẾU BÀI TỰ LUYỆN
Chuyên đề diện tích hình chữ nhật
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích hình chữ nhật, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT 1. Khái niệm diện tích đa giác. Số đo phần mặt phẳng giới hạn bởi một đa giác được gọi là diện tích đa giác đó. Mỗi đa giác có một diện tích là một số dương xác định. Diện tích đa giác có các tính chất sau: + Hai tam giác bằng nhau thì có diện tích bằng nhau. + Nếu một đa giác được chia thành những đa giác không có điểm trong chung thì diện tích của nó bằng tổng diện tích của những đa giác đó. + Nếu chọn hình vuông có cạnh 1 cm, 1 dm, 1 m … làm đơn vị đo diện tích thì đơn vị diện tích của hình vuông đó tương ứng là 1 cm2, 1 dm2, 1 m2 … 2. Công thức tính diện tích một số hình cơ bản. + Diện tích hình chữ nhật bằng tích hai kích thước của nó. + Diện tích hình vuông bằng bình phương cạnh của nó. + Diện tích tam giác vuông bằng nửa tích hai cạnh góc vuông. + Diện tích tam giác thường bằng nửa tích một cạnh và chiều cao hạ xuống cạnh đó. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính diện tích đa giác. Phương pháp giải: Sử dụng ba khái niệm diện tích của đa giác. Dạng 2. Diện tích hình chữ nhật. Phương pháp giải: Sử dụng công thức tính diện tích hình chữ nhật. Dạng 3. Diện tích hình vuông. Phương pháp giải: Sử dụng công thức tính diện tích hình vuông. Dạng 4. Diện tích tam giác vuông. Phương pháp giải: Sử dụng công thức tính diện tích tam giác vuông và định lí Pytago. Dạng 5. Tổng hợp các dạng trên. B. PHIẾU BÀI TỰ LUYỆN Dạng 1: Diện tích hình chữ nhật. Dạng 2: Tính độ dài các cạnh của hình chữ nhật. Dạng 3: Diện tích hình vuông. Diện tích tam giác vuông. Dạng 4: Bài tập tổng hợp.
Chuyên đề đa giác, đa giác đều
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề đa giác, đa giác đều, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT 1. Đa giác: Đa giác A1A2…An là hình gồm n đoạn thẳng A1A2; A2A3;…AnA1 trong đó bất kì hai đoạn thẳng nào có một điểm chung cũng không cùng nằm trên một đường thẳng. 2. Đa giác lồi: Đa giác lồi là đa giác luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất kì cạnh nào của đa giác. 3. Các khái niệm khác. + Một đa giác có n đỉnh được gọi n-giác. + Đường chéo của đa giác là các đoạn thẳng nối hai đỉnh không kề nhau của đa giác đó. + Đa giác đều là đa giác có tất cả các cạnh bằng nhau và tất cả các góc bằng nhau. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA + Dạng 1. Nhận biết đa giác. Phương pháp giải: Sử dụng định nghĩa đa giác trong phần Tóm tắt lý thuyết ở trên. + Dạng 2: Tính chất về góc của đa giác. Phương pháp giải: Tổng các góc trong của đa giác n cạnh (n > 2) là (n – 2).180°. + Dạng 3: Tính chất về đường chéo của đa giác. Phương pháp giải: Xét số đường chéo xuất phát từ một đỉnh. + Dạng 4: Đa giác đều. Phương pháp giải: Sử dụng định nghĩa đa giác đều, công thức tính góc của đa giác đều. B. PHIẾU BÀI TỰ LUYỆN
Chuyên đề hình vuông
Tài liệu gồm 17 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình vuông, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. KIẾN THỨC CẦN NHỚ II. CÁC DẠNG BÀI TẬP A. CÁC DẠNG BÀI TẬP MINH HỌA Dạng 1. Nhận dạng hình vuông. Phương pháp giải: Sử dụng một trong hai cách sau: + Cách 1: Chứng minh tứ giác là hình chữ nhật có thêm dấu hiệu hai cạnh kề bằng nhau hoặc hai đường chéo vuông góc hoặc một đường chéo là đường phân giác của một góc. + Cách 2: Chứng minh tứ giác là hình thoi có thêm dấu hiệu có một góc vuông hoặc hai đường chéo bằng nhau. Dạng 2. Sử dụng định nghĩa, tính chất của hình vuông để chứng minh các quan hệ bằng nhau, song song, vuông góc, thẳng hàng. Phương pháp giải: Sử dụng định nghĩa, tính chất và bổ đề về hình vuông. Dạng 3. Tìm điều kiện để một hình trở thành hình vuông. Phương pháp giải: + Sử dụng các dấu hiệu nhận biết hình vuông. + Nếu bài toán chỉ yêu cầu tìm vị trí của một điểm nào đó để một hình trở thành hình vuông ta làm như sau: giả sử hình đó là hình vuông rồi dựa vào các tính chất của hình vuông để chỉ ra vị trí cần tìm. B. PHIẾU BÀI TẬP RÈN LUYỆN