Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 9 môn Toán năm học 2019 2020 trường THCS Thành Công Hà Nội

Nội dung Đề khảo sát lớp 9 môn Toán năm học 2019 2020 trường THCS Thành Công Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát Toán lớp 9 năm học 2019 - 2020 trường THCS Thành Công Hà Nội Đề khảo sát Toán lớp 9 năm học 2019 - 2020 trường THCS Thành Công Hà Nội Ngày 01 tháng 06 năm 2020, học sinh lớp 9 tại trường THCS Thành Công, Hà Nội, đã tham gia kỳ thi khảo sát chất lượng môn Toán. Đề thi bao gồm 05 bài toán dạng tự luận, thời gian làm bài là 90 phút, với đề thi chỉ có 01 trang. Trong đề khảo sát Toán lớp 9 năm học 2019 - 2020 của trường THCS Thành Công, Hà Nội, một trong những bài toán được đưa ra là: + Giải bài toán bằng cách lập phương trình: Một phân xưởng cần dệt 3000 tấm vải để làm khẩu trang. Họ đã thực hiện đúng kế hoạch trong 8 ngày đầu, và với nhu cầu tăng lên, họ đã dệt vượt mức 10 tấm mỗi ngày, từ đó hoàn thành kế hoạch trước 2 ngày. Hỏi mỗi ngày phân xưởng cần dệt bao nhiêu tấm vải? Một bài toán khác trong đề thi đề cập đến tính thể tích nước chứa trong 45 téc hình trụ mà phía trong có đường kính đáy là 0,6m và chiều cao 1m. Đề còn đưa ra một bài toán khác liên quan đến đường tròn và tiếp tuyến, yêu cầu học sinh chứng minh một số phát biểu liên quan đến tứ giác nội tiếp và các mối quan hệ giữa các đường trong hình. Với các bài toán đa dạng và phong phú như vậy, đề thi khảo sát Toán lớp 9 năm học 2019 - 2020 của trường THCS Thành Công đã thách thức tư duy và khả năng giải quyết vấn đề của học sinh, giúp họ củng cố kiến thức và kỹ năng Toán một cách hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 9 tháng 5 năm 2023 trường THCS Nghĩa Tân - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 tháng 5 năm 2023 trường THCS Nghĩa Tân, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 25 tháng 05 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 tháng 5 năm 2023 trường THCS Nghĩa Tân – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một ca nô xuôi dòng sông từ A đến B dài 48km. Khi đến B, ca nô nghỉ 30 phút sau đó lại ngược dòng từ B về đến A. Tổng thời gian kể từ lúc ca nô đi từ A đến khi ca nô quay trở về A là 4 giờ 6 phút. Tìm vận tốc riêng của ca nô, biết vận tốc dòng nước là 3km/h. + Một thùng tôn hình trụ có bán kính đáy 0,3m và chiều cao 0,7m đang chứa đầy nước. Tính thể tích nước trong thùng (Lấy pi = 3,14 và bỏ qua bề dày của vật liệu). + Cho đường tròn (O; R) có hai đường kính AB và CD vuông góc tại O. Gọi I là trung điểm của OB. Tia CI cắt đường tròn (O) tại E. Gọi H là giao điểm của AE và CD. 1) Chứng minh: Tứ giác OIED nội tiếp. 2) Chứng minh: 2 AH AE R 2 và OA = 3.OH. 3) Gọi K là hình chiếu của O trên BD, Q là giao điểm của AD và BE. Chứng minh: Q, K, I thẳng hàng.
Đề khảo sát Toán 9 năm 2022 - 2023 phòng GDĐT Hoàn Kiếm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND quận Hoàn Kiếm, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 24 tháng 05 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 năm 2022 – 2023 phòng GD&ĐT Hoàn Kiếm – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một mảnh đất hình chữ nhật có chiều dài lớn hơn chiều rộng 12m và diện tích mảnh đất bằng 2 85 m. Tính chiều dài và chiều rộng của mảnh đất theo đơn vị mét? + Một quả địa cầu hành chính có đường kính bằng 33cm. Tính diện tích bề mặt của quả địa cầu lấy pi = 3,14. + Cho đường tròn O R và một điểm M nằm ngoài đường tròn. Kẻ tiếp tuyến MA MB với đường tròn O R (A B là các tiếp điểm). Vẽ đường kính AD, lấy I là trung điểm của đoạn thẳng MO, gọi C là hình chiếu vuông góc của I lên AO. 1) Chứng minh bốn điểm M A O B thuộc một đường tròn. 2) Đường thẳng vuông góc với MO tại điểm I cắt đường thẳng OB tại điểm E. Chứng minh 1 2 2 OBOE OM. 3) Chứng minh IME đồng dạng với COI và CE MD.
Đề khảo sát Toán 9 năm 2022 - 2023 phòng GDĐT Phúc Thọ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Phúc Thọ, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 năm 2022 – 2023 phòng GD&ĐT Phúc Thọ – Hà Nội : + Một mảnh vườn hình chữ nhật. Nếu tăng chiều dài mảnh vườn đó thêm 2m và giảm chiều rộng mảnh vườn đó đi 4m thì diện tích mảnh vườn giảm đi 58m2. Nếu giảm chiều dài mảnh vườn đi 4m và tăng chiều rộng mảnh vườn thêm 5m thì diện tích mảnh vườn tăng thêm 20m2. Tính diện tích mảnh vườn hình chữ nhật lúc ban đầu. + Một quả bóng đá hình cầu có bán kính 10cm. Tính diện tích bề mặt quả bóng đó (lấy pi = 3,14). + Cho đường tròn (O; R) và điểm A cố định ở ngoài đường tròn. Vẽ đường thẳng OA cắt (O) tại hai điểm B và C (AB < AC). Qua A kẻ đường thẳng không đi qua O cắt (O) tại hai điểm D và E (AD < AE). Đường thẳng vuông góc với AB tại A cắt CE tại F. 1. Chứng minh tứ giác ABEF là tứ giác nội tiếp. 2. Gọi M là giao điểm thứ hai của FB với đường tròn (O). Chứng minh DM vuông góc AC. 3. Chứng minh CE.CF + AD.AE = AC2.
Đề khảo sát cuối năm Toán 9 năm 2022 - 2023 trường THCS Nguyễn Trãi - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng cuối năm môn Toán 9 năm học 2022 – 2023 trường THCS Nguyễn Trãi, quận Thanh Xuân, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 04 tháng 05 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát cuối năm Toán 9 năm 2022 – 2023 trường THCS Nguyễn Trãi – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một xe ô tô và một xe máy cùng khởi hành từ A để đi đến B với vận tốc của mỗi xe không đổi trên toàn bộ quãng đường AB dài 60 km. Do vận tốc xe ô tô lớn hơn vận tốc xe máy là 10 km/h nên xe ô tô đến B sớm hơn xe máy 12 phút. Tính vận tốc của mỗi xe. + Một bóng đèn huỳnh quang có dạng một hình trụ có chiều dài bằng 120cm và bán kính của đường tròn đáy bằng 2cm. Tính thể tích của bóng đèn đó. (Lấy pi ~ 3,14). + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = mx + 4. a) Chứng minh đường thẳng (d) luôn đi qua điểm A(0;4) với mọi giá trị của m. b) Tìm tất cả giá trị của m để đường thẳng (d) cắt parabol (P): y = x2 tại hai điểm phân biệt có hoành độ lần lượt là x1, x2 sao cho (x1 + 2×2)(x2 + 2×1) = 14.