Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu lớp 9 môn Toán chủ đề phương trình bậc nhất hai ẩn

Nội dung Tài liệu lớp 9 môn Toán chủ đề phương trình bậc nhất hai ẩn Bản PDF - Nội dung bài viết Tài liệu lớp 9 môn Toán chủ đề phương trình bậc nhất hai ẩn Tài liệu lớp 9 môn Toán chủ đề phương trình bậc nhất hai ẩn Tài liệu này gồm 12 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề phương trình bậc nhất hai ẩn trong chương trình môn Toán lớp 9. Tài liệu cung cấp đầy đủ đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết: 1. Khái niệm phương trình bậc nhất hai ẩn: Phương trình bậc nhất hai ẩn \(ax + by = c\) là phương trình có dạng \(ax + by = c\) (trong đó \(a\), \(b\), \(c\) là các số cho trước và \(a \neq 0\) hoặc \(b \neq 0\). Nếu điểm \(M(x, y) (0, 0)\) thỏa mãn \(ax + by = c\) thì \(M(x, y) (0, 0)\) là một nghiệm của phương trình. Trong mặt phẳng tọa độ \(Oxy\), mỗi nghiệm \(x, y (0, 0)\) của phương trình \(ax + by = c\) được biểu diễn bởi một điểm có tọa độ \((x, y) (0, 0)\) trong đó \(x\) là hoành độ và \(y\) là tung độ. 2. Tập nghiệm của phương trình bậc nhất hai ẩn: Phương trình \(ax + by = c\) luôn có vô số nghiệm. Tập nghiệm của phương trình được biểu diễn bởi đường thẳng \(d: ax + by = c\). Nếu \(a \neq 0\) và \(b \neq 0\) thì phương trình có nghiệm: \(x = \frac{c}{a}\), \(y = R\) và đường thẳng song song hoặc trùng với trục tung \(Oy\). Nếu \(a \neq 0\) và \(b \neq 0\) thì phương trình có nghiệm: \(x = R\), \(y = \frac{c}{b}\) và đường thẳng song song hoặc trùng với trục hoành \(Ox\). Nếu \(a \neq 0\) và \(b \neq 0\) thì phương trình có nghiệm: \(x = R\), \(y = b - \frac{c}{a}x\) hoặc \(y = \frac{c}{b}\) khi đó đường thẳng \(d\) cắt cả hai trục tọa độ. Đường thẳng \(d\) là đồ thị hàm số: \(y = \frac{-ax + c}{b}\). B. Bài tập và các dạng toán: Dạng 1: Xét xem một cặp số có là nghiệm của phương trình bậc nhất hai ẩn hay không? Cách giải: Nếu cặp số thực \( (x, y) (0, 0)\) thỏa mãn \(ax + by = c\) thì nó được gọi là nghiệm của phương trình \(ax + by = c\). Dạng 2: Tìm điều kiện của tham số để đường thẳng \(ax + by = c\) thỏa mãn điều kiện cho trước. Cách giải: Nếu \(a \neq 0\) và \(b \neq 0\) thì phương trình có nghiệm: \(x = \frac{c}{a}\), \(y = R\) và đường thẳng song song hoặc trùng với trục tung \(Oy\). Nếu \(a \neq 0\) và \(b \neq 0\) thì phương trình có nghiệm: \(x = R\), \(y = \frac{c}{b}\) và đường thẳng song song hoặc trùng với trục hoành \(Ox\). Dạng 3: Tìm các nghiệm nguyên của phương trình bậc nhất hai ẩn. Cách giải: Để tìm các nghiệm nguyên của phương trình \(ax + by = c\), ta làm như sau: Bước 1: Tìm một nghiệm nguyên \( (x, y) (0, 0)\) của phương trình. Bước 2: Đưa phương trình về dạng \(ax - x + by - y = 0\) từ đó dễ dàng tìm được các nghiệm nguyên của phương trình. BÀI TẬP TRẮC NGHIỆM BÀI TẬP VỀ NHÀ File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Tài liệu Toán 9 chủ đề hệ thức Vi-ét và ứng dụng
Tài liệu gồm 36 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề hệ thức Vi-ét và ứng dụng trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Hệ thức Viét. 2. Ứng dụng của hệ thức Viét. B. Bài tập. Dạng 1: Không giải phương trình, tính giá trị của biểu thức đối xứng giữa các nghiệm. Dạng 2: Giải phương trình bằng phương pháp nhẩm nghiệm. Dạng 3: Tìm hai số khi biết tổng và tích. Dạng 4: Xét dấu các nghiệm của phương trình bậc hai. Dạng 5: Xác định điều kiện của tham số để phương trình bậc hai có nghiệm thỏa mãn hệ thức cho trước. Dạng 6: Tìm GTLN – GTNN của biểu thức. Dạng 7: Tìm hệ thức giữa hai nghiệm của phương trình không phụ thuộc vào tham số. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề phương trình quy về phương trình bậc hai
Tài liệu gồm 27 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề phương trình quy về phương trình bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Phương trình trùng phương: Phương trình trùng phương là phương trình có dạng: 4 2 ax bx c a 0. Cách giải: Đặt ẩn phụ 2 t xt 0 để đưa phương trình về phương trình bậc hai: 2 at bt c a 0. 2. Phương trình chứa ẩn ở mẫu thức. Để giải phương trình chứa ẩn ở mẫu thức ta làm theo các bước sau: + Bước 1: Tìm điều kiện xác định của ẩn của phương trình. + Bước 2: Quy đồng mẫu thức hai vế rồi khử mẫu. + Bước 3: Giải phương trình vừa nhận được ở bước 2. + Bước 4: So sánh các nghiệm tìm được ở bước 3 với điều kiện xác định và kết luận. 3. Phương trình đưa về dạng tích. Để giải phương trình đưa về dạng tích, ta có thể thực hiện theo các bước sau: + Bước 1: Phân tích vế trái thành nhân tử, vế phải bằng 0. + Bước 2: Xét từng nhân tử bằng 0 để tìm nghiệm. B. Bài tập và các dạng toán. I. Phương trình không chứa tham số. + Dạng 1: Giải phương trình trùng phương. + Dạng 2: Phương trình chứa ẩn ở mẫu thức. + Dạng 3: Phương trình đưa về dạng tích. + Dạng 4: Giải bằng phương pháp đặt ẩn phụ. + Dạng 5: Phương trình chứa căn thức. + Dạng 6: Một số dạng khác. II. Phương trình chứa tham số. + Dạng 1: Phương trình bậc ba đưa được về dạng tích 2 x k ax bx c 0. + Dạng 2: Phương trình trùng phương. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề bài toán về đường thẳng và parabol
Tài liệu gồm 08 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề bài toán về đường thẳng và parabol trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. Cho đường thẳng d y mx n và Parabol P y ax a 0. Khi đó số giao điểm của d và P bằng đúng số nghiệm của phương trình hoành độ giao điểm 2 ax mx n. Ta có bảng sau: Số giao điểm của d và (P) Biệt thức ∆ của phương trình hoành độ giao điểm của d và (P) Vị trí tương đối của d và (P). 0 ∆ 0 d không cắt P. 1 ∆ 0 d tiếp xúc với P. 2 ∆ 0 d cắt P tại hai điểm phân biệt. B. Bài tập.
Tài liệu Toán 9 chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn
Tài liệu gồm 10 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Góc có đỉnh bên trong đường tròn. Góc BIC nằm bên trong đường tròn (O) được gọi là góc có đỉnh ở bên trong đường tròn. Định lí 1: Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn. 2. Góc có đỉnh bên ngoài đường tròn. Các góc có đỉnh nằm bên ngoài đường tròn, các cạnh đều có điểm chung với đường được gọi là góc có đỉnh ở bên ngoài đường tròn. Định lí 2: Số đo của góc có đỉnh ở bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn. B. Bài tập. Dạng 1 : Chứng minh hai góc bằng nhau, hai đoạn thẳng bằng nhau. Cách giải: Sử dụng hai định lí về số đo của góc có đỉnh bên trong đường tròn, góc có đỉnh bên ngoài đường tròn. Dạng 2 : Chứng minh hai đường thẳng song song hoặc vuông góc. Chứng minh đẳng thức cho trước. Cách giải: Áp dụng hai định lí về số đo góc có đỉnh bên trong đường tròn, góc có đỉnh bên ngoài đường tròn để có được các góc bằng nhau, cạnh bằng nhau. Từ đó suy ra điều cần chứng minh.