Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài toán tính góc giữa hai mặt phẳng

Bài toán tính góc giữa hai mặt phẳng là bài toán tương đối khó và nằm ở mức vận dụng và vận dụng cao, bên cạnh những phương pháp truyền thống như dựng hình tạo góc thì trong chủ đề này chúng ta sẽ cùng tìm hiểu tới 3 phương pháp giải quyết các bài toán trắc nghiệm có thể nói gần như mọi bài toán tính góc giữa 2 mặt phẳng mà ta hay gặp. I. CÁC PHƯƠNG PHÁP XỬ LÝ PHƯƠNG PHÁP 1 . SỬ DỤNG CÔNG THỨC HÌNH CHIẾU. Đây là một tính chất khá là cơ bản trong chương trình hình học 11 mà ta cần nắm rõ, công thức của nó rất đơn giản như sau: Cho hình S thuộc mặt phẳng (P), hình S’ là hình chiếu của S lên mặt phẳng (Q), khi đó ta có cosin góc giữa hai mặt phẳng (P) và (Q) được tính theo công thức cosα = S’/S. PHƯƠNG PHÁP 2 . SỬ DỤNG CÔNG THỨC GÓC NHỊ DIỆN. Đây là một công cụ rất mạnh để giải quyết các bài toán tính góc giữa 2 mặt phẳng, hầu hết các bài toán đơn giản hay đến phức tạp đều có thể giải bằng phương pháp này. Các bước thực hiện: Bước 1: Đưa góc giữa hai mặt phẳng về góc giữa hai mặt phẳng kề nhau của một tứ diện. Chú ý điều này luôn thực hiện được. Bước 2: Sử dụng công thức: V = 2S1S2sinα/3a. Trong đó S1, S2 lần lượt là diện tích hai tam giác kề nhau của tứ diện, a là độ dài giao tuyến, còn α là góc giữa hai mặt phẳng cần tìm. [ads] PHƯƠNG PHÁP 3 . SỬ DỤNG PHƯƠNG PHÁP TỌA ĐỘ HÓA. Nói chung đây cũng là một phương pháp rất mạnh, tuy nhiên nhược điểm của nó là phải nhớ công thức tính hơi cồng kềnh và chỉ áp dụng cho những trường hợp ta dựng được hoặc trong bài toán có yếu tố 3 đường vuông góc. Cách thực hiện: Bước 1: Xác định 3 đường vuông góc chung. Bước 2: Gắn hệ trục tọa độ Oxyz, coi giao điểm của 3 đường vuông góc chung là gốc tọa độ. Bước 3: Từ giả thiết tìm tọa độ của các điểm có liên quan tới giả thiết. Bước 4: Áp dụng công thức cần tính để suy ra kết quả. Theo kinh nghiệm thì những bài toán có giả thiết liên quan tới hình hộp chữ nhật, hình lập phương thì thì ta nên sử dụng phương pháp tọa độ hóa, ngoài ra các bài có yếu tố một cạnh của chóp vuông góc với đáy hay liên quan tới lăng trụ đứng ta cũng có thể sử dụng phương pháp này nhưng tùy vào từng bài mà ta có hướng đi khác nhau, có thể là sử dụng phương pháp 2 hoặc sử dụng phương pháp 1, tùy vào kỹ năng của người làm bài. II. BÀI TẬP TỰ LUYỆN

Nguồn: toanmath.com

Đọc Sách

Chuyên đề khối đa diện và thể tích khối đa diện - Bùi Đình Thông
Tài liệu gồm 39 trang, được biên soạn bởi thầy giáo Bùi Đình Thông, tóm tắt lý thuyết, công thức và bài tập chuyên đề khối đa diện và thể tích khối đa diện (có đáp án), giúp học sinh học tốt chương trình Hình học 12 chương 1 và ôn thi Trung học Phổ thông Quốc gia môn Toán. Giới thiệu về chuyên đề khối đa diện và thể tích khối đa diện – Bùi Đình Thông: + Tóm tắt lý thuyết dễ tiếp cận. + Công thức tính nhanh các khối đa diện đặc biệt. + Bài tập được biên soạn kĩ cho học sinh dễ làm quen. + Hình vẽ minh họa chi tiết và hấp dẫn. + Dành cho đối tượng học sinh có học lực trung bình – khá.
Chuyên đề khối đa diện và thể tích của chúng - Nguyễn Trọng
Tài liệu gồm 61 trang, được biên soạn bởi thầy giáo Nguyễn Trọng, phân dạng và hướng dẫn giải các dạng toán thường gặp trong chuyên đề Hình học 12 chương 1: Khối đa diện và thể tích của chúng. Bài 1 . Khái niệm khối đa diện. + Dạng toán 1. Nhận diện đa diện. + Dạng toán 2. Xác định số đỉnh, cạnh, mặt bên của một khối đa diện. + Dạng toán 3. Mặt phẳng đối xứng. + Dạng toán 4. Phân chia lắp ghép khối đa diện. Bài 2 . Khối đa diện lồi – khối đa diện đều. + Dạng toán 1. Nhận dạng khối đa diện lồi. + Dạng toán 2. Nhận dạng khối đa diện đều. + Dạng toán 3. Mối liên hệ giữa số cạnh, số mặt và số đỉnh của đa diện đều. Bài 3 . Thể tích khối chóp có cạnh bên vuông góc đáy. + Dạng toán 1. Chóp có đáy là tam giác. + Dạng toán 2. Chóp có đáy là hình vuông, chữ nhật, thoi, thang. Bài 4 . Thể tích khối chóp có mặt bên vuông góc đáy. + Dạng toán 1. Chóp có đáy là tam giác. + Dạng toán 2. Chóp có đáy là tứ giác. Bài 5 . Thể tích khối chóp đều. + Dạng toán 1. Chóp có đáy là tam giác đều. + Dạng toán 2. Chóp có đáy là hình vuông. Bài 6 . Thể tích khối lăng trụ đứng. + Dạng toán 1. Lăng trụ đứng có đáy là tam giác. + Dạng toán 2. Lăng trụ có đáy là tứ giác. Bài 7 . Tỷ số thể tích. + Dạng toán. Tỷ số cơ bản của khối chóp tam giác.
Chuyên đề khối đa diện và thể tích khối đa diện ôn thi THPT 2021 - Nguyễn Bảo Vương
Tài liệu gồm 381 trang, được biên soạn bởi thầy giáo Nguyễn Bảo Vương, hướng dẫn phương pháp giải các dạng toán và tuyển chọn các bài tập trắc nghiệm chuyên đề khối đa diện và thể tích khối đa diện (Hình học 12 chương 1), có đáp án và lời giải chi tiết, giúp học sinh học tốt chương trình Toán 12 và ôn thi THPT môn Toán năm học 2020 – 2021. Chuyên đề 1 . NHẬN DIỆN KHỐI ĐA DIỆN. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH TRUNG BÌNH – YẾU (Mức độ 5 – 6 điểm). + Dạng toán 1. Nhận dạng khối đa diện. + Dạng toán 2. Tính chất đối xứng khối đa diện. + Dạng toán 3. Phân chia, lắp ghép khối đa diện. Chuyên đề 2 . THỂ TÍCH KHỐI CHÓP. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH TRUNG BÌNH – YẾU (Mức độ 5 – 6 điểm). + Dạng toán 1. Cạnh bên vuông góc với đáy. + Dạng toán 2. Mặt bên vuông góc với đáy. + Dạng toán 3. Thể tích khối chóp đều. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (Mức độ 7 – 8 điểm). + Dạng toán 1. Cạnh bên vuông góc với đáy. + Dạng toán 2. Mặt bên vuông góc với đáy. + Dạng toán 3. Thể tích khối chóp đều. + Dạng toán 4. Thể tích khối chóp khác. Chuyên đề 3 . THỂ TÍCH KHỐI LĂNG TRỤ. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH TRUNG BÌNH – YẾU (Mức độ 5 – 6 điểm). + Dạng toán. Thể tích khối lăng trụ đứng. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (Mức độ 7 – 8 điểm). + Dạng toán 1. Thể tích khối lăng trụ đứng. + Dạng toán 2. Thể tích khối lăng trụ xiên. Chuyên đề 4 . MỘT SỐ BÀI TOÁN KHÓ THỂ TÍCH KHỐI CHÓP – LĂNG TRỤ. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (Mức độ 9 – 10 điểm). Chuyên đề 5 . TỈ SỐ THỂ TÍCH. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH TRUNG BÌNH – YẾU (Mức độ 5 – 6 điểm). + Dạng toán 1. Tỉ số thể tích khối chóp tam giác. + Dạng toán 2. Tỉ số khối lăng trụ. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ – GIỎI – XUẤT SẮC (Mức độ 7 – 8 – 9 – 10 điểm). + Dạng toán 1. Tỉ số thể tích khối chóp – khối lăng trụ. + Dạng toán 2. Ứng dụng tỉ số thể tích để tính thể tích. Chuyên đề 6 . THỂ TÍCH KHỐI ĐA DIỆN DIỆN KHÁC. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (Mức độ 9 – 10 điểm). Chuyên đề 7 . BÀI TOÁN CỰC TRỊ THỂ TÍCH KHỐI ĐA DIỆN. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (Mức độ 9 – 10 điểm). Xem thêm : Chuyên đề khảo sát và vẽ đồ thị hàm số ôn thi THPT 2021 – Nguyễn Bảo Vương
Bài toán VD - VDC tỉ số thể tích - Nguyễn Công Định
Tài liệu gồm 69 trang, được biên soạn bởi thầy giáo Nguyễn Công Định (giáo viên Toán trường THTP Đầm Dơi, tỉnh Cà Mau), hướng dẫn giải 57 bài tập trắc nghiệm tỉ số thể tích mức độ vận dụng – vận dụng cao (VD – VDC), giúp học sinh học tốt chương trình Hình học 12 chương 1 (khối đa diện và thể tích của chúng) và ôn thi THPT Quốc gia môn Toán. Bài toán 1: Tỉ số thể tích hình chóp tam giác. Bài toán 2: Tỉ số thể tích hình chóp tứ giác có đáy là hình bình hành. Bài toán 3: Tỉ số thể tích hình chóp lăng trụ tam giác. Bài toán 4: Tỉ số thể tích hình hộp. Kiến thức khác: Tỉ số thể tích hình chóp chung đỉnh hoặc chung đáy. Xem thêm : + Bài tập tỉ số thể tích khối đa diện có lời giải chi tiết + Sử dụng phương pháp tỉ số thể tích giải quyết bài toán thể tích khối đa diện – Nguyễn Ngọc Dũng