Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 8 môn Toán cấp tỉnh năm 2015 2016 sở GD ĐT Lai Châu

Nội dung Đề thi học sinh giỏi lớp 8 môn Toán cấp tỉnh năm 2015 2016 sở GD ĐT Lai Châu Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 cấp tỉnh năm 2015 – 2016 sở GD&ĐT Lai Châu Đề thi học sinh giỏi Toán lớp 8 cấp tỉnh năm 2015 – 2016 sở GD&ĐT Lai Châu Đề thi học sinh giỏi Toán lớp 8 cấp tỉnh năm 2015 – 2016 sở GD&ĐT Lai Châu là bài thi được tổ chức vào ngày 03 tháng 04 năm 2016. Đây là cơ hội tuyệt vời để các em học sinh lớp 8 có thể thể hiện tài năng và kiến thức của mình trong môn Toán. Sytu xin giới thiệu đến quý thầy cô và các em học sinh bộ đề thi này, hy vọng rằng đây sẽ là cơ hội để các em thử sức, rèn luyện và tiến bộ trong học tập. Kỳ thi này không chỉ là cơ hội để các em kiểm tra kiến thức mà còn là dịp để chứng minh khả năng và sự nỗ lực của mình.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 8 năm 2018 - 2019 phòng GDĐT Nậm Nhùn - Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2018 – 2019 phòng GD&ĐT Nậm Nhùn – Lai Châu; kỳ thi được diễn ra vào ngày 13 tháng 01 năm 2019.
Đề giao lưu học sinh giỏi Toán 8 năm 2018 - 2019 phòng GDĐT thành phố Thái Nguyên
Đề giao lưu học sinh giỏi Toán 8 năm 2018 – 2019 phòng GD&ĐT thành phố Thái Nguyên gồm 03 trang với 08 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút.
Đề giao lưu HSG Toán 8 năm 2017 - 2018 phòng GDĐT Chí Linh - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu HSG Toán 8 năm 2017 – 2018 phòng GD&ĐT Chí Linh – Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 8 năm 2017 – 2018 phòng GD&ĐT Chí Linh – Hải Dương : + Cho hình thoi ABCD cạnh a có. Hai đường chéo AC và BD cắt nhau tại O, E thuộc tia BC sao cho, AE cắt CD tại F. Trên hai đoạn AB và AD lần lượt lấy hai điểm G và H sao cho CG song song với FH. a) Tính diện tích hình thoi ABCD theo a. b) Chứng minh rằng. c) Tính số đo góc GOH. + Đa thức P(x) bậc 4 có hệ số bậc cao nhất là 1. Biết P(1) = 0; P(3) = 0; P(5) = 0. Tính giá trị của biểu thức: Q = P(-2) + 7P(6). + Cho 3 số nguyên tố x < y < z liên tiếp thỏa mãn là một số nguyên tố. Chứng minh rằng cũng là một số nguyên tố.
Đề Olympic Toán 8 năm 2017 - 2018 phòng GDĐT Kinh Môn - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề Olympic Toán 8 năm 2017 – 2018 phòng GD&ĐT Kinh Môn – Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề Olympic Toán 8 năm 2017 – 2018 phòng GD&ĐT Kinh Môn – Hải Dương : + Cho O là trung điểm của đoạn AB. Trên cùng một nửa mặt phẳng có bờ là đường thẳng AB vẽ tia Ax, By cùng vuông góc với AB. Trên tia Ax lấy điểm C (khác A), qua O kẻ đường thẳng vuông góc với OC cắt tia By tại D. 1) Chứng minh AB2 = 4 AC.BD. 2) Kẻ OM vuông góc CD tại M. Chứng minh AC = CM. 3) Từ M kẻ MH vuông góc AB tại H. Chứng minh BC đi qua trung điểm MH. + Cho đa thức f(x) = x3 – 3×2 + 3x – 4. Với giá trị nguyên nào của x thì giá trị của đa thức f(x) chia hết cho giá trị của đa thức x2 + 2. + Cho x, y, z là các số dương thỏa mãn x + y + z = 1. Tìm giá trị nhỏ nhất của biểu thức: P.