Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Kỳ Anh Hà Tĩnh

Nội dung Đề học sinh giỏi huyện lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Kỳ Anh Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 huyện Kỳ Anh năm 2021 - 2022 Đề thi học sinh giỏi Toán lớp 8 huyện Kỳ Anh năm 2021 - 2022 Chúng ta sẽ cùng tìm hiểu và phân tích nội dung của đề thi học sinh giỏi môn Toán lớp 8 cấp huyện năm học 2021 - 2022 do Phòng Giáo dục và Đào tạo huyện Kỳ Anh, tỉnh Hà Tĩnh ban hành. 1. Bài toán về quãng đường từ Khu kinh tế Vũng Áng đến thành phố Vinh yêu cầu học sinh phải tính vận tốc ban đầu của người đi xe máy để đến đúng thời gian dự định sau khi nghỉ giải lao. Đây là một bài toán kinh điển về vận tốc, khoa học và logic. 2. Bài toán về tam giác ABC có AM là đường trung tuyến sẽ giúp học sinh phát triển kỹ năng giải bài toán hình học. Bằng cách sử dụng kiến thức về diện tích tam giác và đường trung tuyến, học sinh sẽ có cơ hội rèn luyện tư duy logic và khả năng phân tích bài toán. 3. Bài toán về việc tổ chọn ra các đấu thủ bóng bàn để thi đấu giao hữu sẽ giúp học sinh phát triển kỹ năng tư duy toán học và tính toán. Học sinh sẽ cần tính toán số lượng đấu thủ để đáp ứng yêu cầu của bài toán, từ đó rèn luyện khả năng suy luận và xử lý tình huống. Đề thi học sinh giỏi Toán lớp 8 huyện Kỳ Anh năm 2021 - 2022 không chỉ là cơ hội để học sinh thể hiện khả năng mà còn là dịp để rèn luyện kiến thức và kỹ năng giải bài toán. Chúc các em học sinh thành công trong việc giải quyết các bài toán thú vị này!

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra HSG Toán 8 năm 2023 - 2024 phòng GDĐT Ninh Giang - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra đội tuyển học sinh giỏi môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Ninh Giang, tỉnh Hải Dương; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề kiểm tra HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT Ninh Giang – Hải Dương : + Cho tam giác ABC nhọn AB < AC. Các đường cao AD, BE, CF cắt nhau tại H D BC E AC F. a) Chứng minh AF.AB = AE.AC. b) Qua D kẻ đường thẳng song song với EF cắt AB tại M, cắt CF tại N. Chứng minh FEH DEH và DM = DN. + Cho tam giác ABC nhọn (AB < AC). Các đường cao BM, CN cắt nhau tại I M AC N AB. Gọi E là trung điểm BC, IE cắt MN tại F. Chứng minh FM IM FN IN. + Tìm số nguyên dương n sao cho 2 An 4 14 7 là số chính phương.
Đề học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Nghĩa Lộ - Yên Bái
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 THCS năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND Thị Xã Nghĩa Lộ, tỉnh Yên Bái. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Nghĩa Lộ – Yên Bái : + Cho hình bình hành ABCD trong đó có A > 90° và AB > BC. Qua C dựng đường thẳng vuông góc với BC rồi lấy các điểm M và N sao cho CM = CN = CB. Qua C dựng đường vuông góc với CD rồi lấy các điểm P và Q sao cho CP = CQ = CD (M và P ở trong cùng nửa mặt phẳng với D có bờ BC). Chứng minh: a) MPNQ là hình bình hành. b) AC vuông góc MP. + Tìm số nguyên n sao cho n3 – 2 chia hết cho n – 2. + Cho n là số nguyên tố. Hỏi n10 – 1 là số nguyên tố hay hợp số? Vì sao?
Đề học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Tiền Hải - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chất lượng học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tiền Hải, tỉnh Thái Bình. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Tiền Hải – Thái Bình : + Cho hàm số y = mx + 4m + 3 (m là tham số) có đồ thị là đường thẳng (d). Tìm điểm cố định mà đường thẳng (d) đi qua với mọi giá trị của m. + Cho tam giác nhọn ABC, các đường cao BE, CF. Gọi M là trung điểm của cạnh BC. a) Chứng minh MEF cân và AEF = ABC. b) Trên đoạn BE lấy điểm Q sao cho BFQ = CFE. Chứng minh BFQ đồng dạng với CFE và EF.BC + BF.CE = BE.CF. + Cho tam giác nhọn ABC. Gọi N là điểm bất kì trên đoạn thẳng BC (N khác B và C). Gọi các điểm H, K lần lượt là hình chiếu vuông góc của N trên cạnh AB, AC. Xác định vị trí của điểm N để đoạn thẳng HK có độ dài nhỏ nhất.
Đề giao lưu HSG Toán 8 năm 2023 - 2024 phòng GDĐT thành phố Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi giao lưu học sinh giỏi môn Toán 8 THCS cấp thành phố năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Thanh Hóa, tỉnh Thanh Hóa. Trích dẫn Đề giao lưu HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT thành phố Thanh Hóa : + Giả sử đa thức f x chia cho x 1 dư 4; chia cho 2 x 1 dư 2 3 x. Hãy tìm dư trong phép chia f x cho 2. + Cho O là trung điểm của đoạn thẳng AB. Vẽ tia Ax By cùng phía đối với AB và vuông góc AB. Trên tia Ax lấy điểm C (khác A), qua O kẻ đường thẳng vuông góc với OC cắt tia By tại D. a) Chứng minh OAC đồng dạng với DBO và 2 AB AC BD. b) Kẻ OM vuông góc CD tại M. Tia BM cắt tia Ax tại I. Chứng minh AC CM CI 2) Cho ABC (AB AC) trọng tâm G. Qua G vẽ đường thẳng d cắt các cạnh AB AC lần lượt ở D và E. Chứng minh rằng 3 AB AC AD AE. + Một hộp đựng 20 quả bóng trong đó có 4 quả màu xanh, 5 quả màu trắng và 6 quả màu vàng (các quả còn lại khác màu nhau). Lấy ngẫu nhiên từ hộp ra 2 quả, tính xác suất để lấy được 2 quả cùng màu?