Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bộ đề ôn thi THPT Quốc gia môn Toán năm 2020 có đáp án

giới thiệu đến quý thầy, cô giáo và các em học sinh bộ đề ôn thi THPT Quốc gia môn Toán năm 2020 có đáp án; tài liệu gồm có 85 trang bao gồm 12 đề thi thử THPT Quốc gia 2020 môn Toán; các đề được biên soạn theo hình thức và cấu trúc tương tự và bám sát với đề thi THPTQG môn Toán chính thức những năm gần đây. Trích dẫn tài liệu bộ đề ôn thi THPT Quốc gia môn Toán năm 2020 có đáp án: + Một biển quảng cáo có dạng hình elip với bốn đỉnh A1, A2, B1, B2 như hình vẽ bên. Biết chi phí để sơn phần tô đậm là 200.000 đồng/m2 và phần còn lại là 100.000 đồng/m2. Hỏi số tiền để sơn theo cách trên gần nhất với số tiền nào dưới đây, biết A1A2 = 8m, B1B2 = 6m và tứ giác MNP Q là hình chữ nhật có MQ = 3m? + Một cơ sở sản xuất có hai bể nước hình trụ có chiều cao bằng nhau, bán kính đáy lần lượt bằng 1 m và 1,2 m. Chủ cơ sở dự định làm một bể nước mới, hình trụ, có cùng chiều cao và có thể tích bằng tổng thể tích của hai bể nước trên. Bán kính đáy của bể nước dự định làm gần nhất với kết quả nào dưới đây? [ads] + Trong không gian Oxyz, cho mặt cầu (S): x2 + y2 + (z + √2)2 = 3. Có tất cả bao nhiêu điểm A(a; b; c) (a, b, c là các số nguyên) thuộc mặt phẳng (Oxy) sao cho có ít nhất hai tiếp tuyến của (S) đi qua A và hai tiếp tuyến đó vuông góc với nhau? + Chọn ngẫu nhiên hai số khác nhau từ 27 số nguyên dương đầu tiên. Xác suất để chọn được hai số có tổng là một số chẵn bằng? + Cho đường thẳng y = 3x và parabol y = 2x^2 + a (a là tham số thực dương). Gọi S1 và S2 lần lượt là diện tích của hai hình phẳng được gạch chéo trong hình vẽ bên. Khi S1 = S2 thì a thuộc khoảng nào dưới đây?

Nguồn: toanmath.com

Đọc Sách

Đề thi định kỳ Toán 12 lần 1 năm 2020 - 2021 trường Việt Yên 1 - Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi định kỳ Toán 12 lần 1 năm học 2020 – 2021 trường THPT Việt Yên số 1, tỉnh Bắc Giang; đề thi được biên soạn theo hình thức 100% trắc nghiệm với 50 câu hỏi và bài toán, đề gồm có 05 trang, thời gian làm bài 90 phút, đề thi có đáp án mã đề 121, 122, 123, 124. Trích dẫn đề thi định kỳ Toán 12 lần 1 năm 2020 – 2021 trường Việt Yên 1 – Bắc Giang : + Cắt khối lăng trụ ABC.A’B’C’ bởi các mặt phẳng (AB’C’) và (ABC’) ta được những khối đa diện nào? A. Hai khối tứ diện và hai khối chóp tứ giác. B. Ba khối tứ diện. C. Hai khối tứ diện và một khối chóp tứ giác. D. Một khối tứ diện và hai khối chóp tứ giác. + Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác vuông cân, AB = BC = 2a. Tam giác A’AC cân tại A’ và nằm trong mặt phẳng vuông góc với mặt đáy. Thể tích của khối lăng trụ ABC.A’B’C’ bằng 2a3. Tính khoảng cách giữa hai đường thẳng AB và CC’. + Cho tập hợp A có 7 phần tử. Hỏi tập A có bao nhiêu tập con có nhiều hơn một phần tử?
Đề thi thử Toán THPT Quốc gia 2021 lần 1 trường THPT Quảng Xương 1 - Thanh Hóa
Sáng Chủ Nhật ngày 17 tháng 01 năm 2021, trường THPT Quảng Xương 1, tỉnh Thanh Hóa tổ chức kỳ thi giao lưu kiến thức thi THPT Quốc gia môn Toán năm học 2020 – 2021 lần thứ nhất. Đề thi thử Toán THPT Quốc gia 2021 lần 1 trường THPT Quảng Xương 1 – Thanh Hóa được biên soạn theo hình thức 100% trắc nghiệm, đề gồm 06 trang với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, kết quả được đăng tải trên web: quangxuong1.edu.vn vào ngày 21/01/2021, lịch giao lưu lần 2 ngày 07/03/2021. Trích dẫn đề thi thử Toán THPT Quốc gia 2021 lần 1 trường THPT Quảng Xương 1 – Thanh Hóa : + Năm 2020, một doanh nghiệp X có tổng doanh thu là 150 tỉ đồng. Dự kiến trong 10 năm tiếp theo, tổng doanh thu mỗi năm sẽ tăng thêm 12% so với năm liền trước. Theo dự kiến đó thì kể từ năm nào, tổng doanh thu của doanh nghiệp X vượt quá 360 tỉ đồng? + Cho khối cầu bán kính bằng 5, cắt khối cầu này bằng một mặt phẳng sao cho thiết diện tạo thành là một hình tròn có đường kính bằng 4. Tính thể tích khối nón có đáy là thiết diện vừa tạo và đỉnh là tâm của khối cầu đã cho. + Từ 12 học sinh gồm 5 học sinh giỏi, 4 học sinh khá, 3 học sinh trung bình, giáo viên muốn thành lập 4 nhóm làm 4 bài tập lớn khác nhau, mỗi nhóm 3 học sinh. Tính xác suất để nhóm nào cũng có học sinh giỏi và học sinh khá.
Đề thi thử TN THPT 2021 môn Toán lần 2 trường Nguyễn Đăng Đạo - Bắc Ninh
Chủ Nhật ngày 17 tháng 01 năm 2021, trường THPT Nguyễn Đăng Đạo, huyện Tiên Du, tỉnh Bắc Ninh tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông Quốc gia môn Toán năm học 2020 – 2021 lần thứ hai. Đề thi thử TN THPT 2021 môn Toán lần 2 trường Nguyễn Đăng Đạo – Bắc Ninh mã đề 171 gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi thử TN THPT 2021 môn Toán lần 2 trường Nguyễn Đăng Đạo – Bắc Ninh : + Kể từ ngày 1/1/2021, cứ vào ngày mùng 1 hàng tháng, ông A ra gửi ngân hàng số tiền là x (đồng) với lãi suất 0,5% / tháng. Biết tiền lãi của tháng trước được cộng vào tiền gốc của tháng sau. Tìm giá trị nhỏ nhất của x để đến ngày 1/1/2022 khi ông A rút cả gốc và lãi thì được số tiền lãi là hơn 10 triệu đồng? (kết quả lấy làm tròn đến nghìn đồng). + Một thợ thủ công muốn vẽ trang trí một hình vuông kích thước 4m x 4m bằng cách vẽ một hình vuông mới với các đỉnh là trung điểm các cạnh của hình vuông ban đầu, và tô kín màu lên hai tam giác đối diện (như hình vẽ). Quá trình vẽ và tô theo quy luật đó được lặp lại 5 lần. Tính số tiền nước sơn để người thợ đó hoàn thành trang trí hình vuông như trên? Biết tiền nước sơn 1m2 là 60.000 đồng. + Trong mặt phẳng (P), cho hình chữ nhật ABCD có AB = a, AD = b. Trên các nửa đường thẳng Ax, Cy vuông góc với (P) và ở cùng một phía với mặt phẳng ấy, lần lượt lấy các điểm M, N sao cho (MBD) vuông góc với (NBD). Tìm giá trị nhỏ nhất Vmin của thể tích khối tứ diện MNBD.
Đề thi thử Toán tốt nghiệp THPT 2021 lần 1 trường Lương Thế Vinh - Hà Nội
Ngày … tháng 01 năm 2021, trường THCS – THPT Lương Thế Vinh, thành phố Hà Nội tổ chức kỳ thi thử tốt nghiệp THPT môn Toán năm học 2020 – 2021 lần thứ nhất. Đề thi thử Toán tốt nghiệp THPT 2021 lần 1 trường Lương Thế Vinh – Hà Nội mã đề 101 gồm 07 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi thử Toán tốt nghiệp THPT 2021 lần 1 trường Lương Thế Vinh – Hà Nội : + Trong không gian với hệ trục tọa độ Oxyz, cho hai véctơ a(3;-2;m), b(2;m;-1) với m là tham số nhận giá trị thực. Tìm giá trị của m để hai véctơ a và b vuông góc với nhau. + Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(1;1;4), B(5;-1;3), C(3;1;5) và D(2;2;m) (với m là tham số). Xác định m để bốn điểm A, B, C và D tạo thành bốn đỉnh của một tứ diện. + Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3;0;0), B(-3;0;0) và C(0;5;1). Gọi M là một điểm nằm trên mặt phẳng (Oxy) sao cho MA + MB = 10, giá trị nhỏ nhất của MC là?