Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề tổ hợp và xác suất

Tài liệu gồm 215 trang phân dạng và hướng dẫn giải các dạng toán tổ hợp và xác suất trong chương trình Đại số và Giải tích 11 chương 1. Khái quát nội dung chuyên đề tổ hợp và xác suất: 1 TỔNG QUAN KIẾN THỨC TỔ HỢP – XÁC SUẤT 1 Các quy tắc đếm. A Bài tập mẫu. B Bài tập mẫu. 2 Chỉnh hợp. A Bài tập mẫu. 3 Hoán vị. A Bài tập mẫu. 4 Tổ hợp. A Tóm tắt lí thuyết. B Bài tập mẫu. C Bài tập rèn luyện. 2 CÁC DẠNG TOÁN TỔ HỢP Dạng 0.1. Rút gọn một biểu thức chứa chỉnh hợp – hoán vị – tổ hợp. Dạng 0.2. Giải phương trình liên quan đến chỉnh hợp – tổ hợp – hoán vị. Dạng 0.3. Giải bất phương trình liên quan đến chỉnh hợp – hoán vị – tổ hợp. Dạng 0.4. Giải hệ phương trình chỉnh hợp – hoán vị – tổ hợp. Dạng 0.5. Chứng minh một đẳng thức tổ hợp. Dạng 0.5. Chứng minh một đẳng thức tổ hợp (Cách 2). Dạng 0.5. Chứng minh một đẳng thức tổ hợp (Cách 3). Dạng 0.5. Chứng minh một đẳng thức tổ hợp (Cách 4). Dạng 0.5. Chứng minh một đẳng thức tổ hợp (Cách 5 – dùng đạo hàm). Dạng 0.5. Chứng minh một đẳng thức tổ hợp (Cách 6 – dùng tích phân). Dạng 0.6. Tính tổng một biểu thức tổ hợp. Dạng 0.7. Tìm hệ số của một số hạng hoặc tìm một số hạng (không có giả thiết). Dạng 0.8. Tìm hệ số của một số hạng hoặc tìm một số hạng (có giả thiết). Dạng 0.9. Chứng minh bất đẳng thức tổ hợp. [ads] 3 CÁC DẠNG TOÁN LÝ LUẬN Dạng 0.10. Đếm số dùng quy tắc nhân và quy tắc cộng. Dạng 0.11. Bài toán đếm số – Dùng chỉnh hợp. Dạng 0.12. Bài toán sắp xếp đồ vật. Dạng 0.13. Bài toán sắp xếp người. Dạng 0.14. Bài toán chọn vật, dùng tổ hợp. Dạng 0.15. Bài toán chọn về người – Dùng tổ hợp. Dạng 0.16. Bài toán chọn về người – Dùng tổ hợp. Dạng 0.17. Bài toán phân chia tập hợp – dùng tổ hợp. Dạng 0.18. Đếm số điểm, số đoạn thẳng, số góc, số đa giác, số miền. 1 Bộ đề số 1. 2 Bộ đề số 2. 3 Bộ đề số 3. 4 Bộ đề số 4. 5 Bộ đề số 5. 4 CÁC BÀI TOÁN XÁC SUẤT THI HỌC SINH GIỎI Dạng 0.1. Bài toán chia hết. Dạng 0.2. Số lần xuất hiện của chữ số. Dạng 0.3. Liên quan đến vị trí. Dạng 0.4. Các bài toán đếm số phương án, tính xác suất liên quan người, đồ vật. Dạng 0.5. Các bài toán đếm số phương án. Tính xác suất liên quan đến đa giác. Dạng 0.6. Các bài toán đếm, sắp xếp liên quan đến vị trí, xếp chỗ.

Nguồn: toanmath.com

Đọc Sách

Các bài toán đếm - xác suất hay và khó
Tài liệu gồm 58 trang trình bày phương pháp giải một số bài toán đếm – xác suất hay và khó trong chương trình Đại số và Giải tích 11 chương 2, tài liệu được biên soạn bởi các thành viên nhóm Chinh phục Olympic Toán. Tóm tắt nội dung tài liệu : I. Hai bài toán tính xác suất có nhiều ứng dụng 1. Bài toán chia kẹo Euler: Bài toán chia kẹo của Euler là bài toán nổi tiếng trong lý thuyết tổ hợp. Với những học sinh chuyên toán cấp 3 thì đây là bài toán quen thuộc và có nhiều ứng dụng. 2. Bài toán đếm hình học II. Các bài toán tổng hợp Tuyển chọn 95 bài toán đếm – xác suất hay và khó có lời giải chi tiết.
Trắc nghiệm nâng cao tổ hợp và xác suất - Đặng Việt Đông
Tài liệu trắc nghiệm nâng cao tổ hợp và xác suất do thầy Đặng Việt Đông biên soạn tuyển tập các câu hỏi và bài tập trắc nghiệm vận dụng cao chủ đề tổ hợp và xác suất có đáp án và lời giải chi tiết trong chương trình Đại số và Giải tích 11 chương 2, các câu hỏi trong tài liệu có mức độ khó cao, được trích dẫn từ các đề thi thử môn Toán nhằm giúp học sinh ôn luyện chuẩn bị cho kỳ thi THPT Quốc gia.
Chuyên đề tổ hợp - xác suất - Bùi Trần Duy Tuấn
giới thiệu đến bạn đọc tài liệu chuyên đề tổ hợp – xác suất do thầy Bùi Trần Duy Tuấn biên soạn, tài liệu gồm 180 trang bao gồm kiến thức cơ bản, phân dạng toán, ví dụ minh họa và tuyển chọn các bài tập trắc nghiệm có lời giải chi tiết các chủ đề quy tắc đếm, hoán vị – chỉnh hợp – tổ hợp, tính toán liên quan đến các công thức, nhị thức NewTơn, biến cố và xác suất của biến cố trong chương trình Đại số và Giải tích 11 chương 2. Tài liệu thích hợp với học sinh khối 11 trong quá trình tự học chương tổ hợp – xác suất và học sinh khối 12 nhằm ôn tập lại các kiến thức tổ hợp – xác suất đã học để chuẩn bị cho kỳ thi THPT Quốc gia. CHỦ ĐỀ 1 : QUY TẮC ĐẾM A. Kiến thức cơ bản cần nắm 1. Quy tắc cộng 2. Quy tắc nhân 3. Các bài toán đếm cơ bản B. Một số bài toán minh họa C. Bài tập trắc nghiệm CHỦ ĐỀ 2 : HOÁN VỊ – CHỈNH HỢP – TỔ HỢP A. Kiến thức cơ bản cần nắm 1. Hoán vị 2. Chỉnh hợp 3. Tổ hợp B. Một số bài toán điển hình C. Bài tập trắc nghiệm + Dạng 1. Bài toán đếm + Dạng 2. Xếp vị trí – cách chọn, phân công công việc + Dạng 3. Đếm tổ hợp liên quan đến hình học CHỦ ĐỀ 3 : TÍNH TOÁN LIÊN QUAN ĐẾN CÁC CÔNG THỨC A. Nhắc lại các công thức B. Bài tập trắc nghiệm [ads] CHỦ ĐỀ 4 : NHỊ THỨC NEWTƠN A. Kiến thức cần nắm 1. Công thức nhị thức Newtơn 2. Tam giác Pascal B. Các dạng toán liên quan đến nhị thức Newtơn 1. Xác định các hệ số trong khai triển nhị thức Newtơn a. Tìm hệ số của số hạng chứa x^m trong khai triển (ax^p + bx^q)^n b. Xác định hệ số lớn nhất trong khai triển nhị thức Niutơn c. Xác định hệ số của số hạng trong khai triển P(x) = (ax^t + bx^p + cx^q)^n 2. Các bài toán tìm tổng a. Thuần nhị thức Newton b. Sử dụng đạo hàm cấp 1, cấp 2 c. Sử dụng tích phân C. Bài tập trắc nghiệm + Dạng 1. Xác định các hệ số, số hạng trong khai triển nhị thức Newton + Dạng 2. Các bài toán tìm tổng CHỦ ĐỀ 5 : BIẾN CỐ VÀ XÁC SUẤT CỦA BIẾN CỐ A. Kiến thức cần nắm 1. Phép thử ngẫu nhiên và không gian mẫu 2. Biến cố 3. Xác suất của biến cố B. Các dạng toán về xác suất 1. Sử dụng định nghĩa cổ điển về xác xuất – quy về bài toán đếm a. Bài toán tính xác suất sử dụng định nghĩa cổ điển bằng cách tính trực tiếp số phần tử thuận lợi cho biến cố b. Tính xác suất sử dụng định nghĩa cổ điển bằng phương pháp gián tiếp 2. Sử dụng quy tắc tính xác suất a. Phương pháp b. Một số bài toán minh họa C. Bài tập trắc nghiệm + Dạng 1. Xác định phép thử, không gian mẫu và biến cố + Dạng 2. Tìm xác suất của biến cố + Dạng 3. Các quy tắc tính xác suất
Phân dạng và bài tập chuyên đề tổ hợp - xác suất - Trần Quốc Nghĩa
Tài liệu gồm 75 trang phân dạng, hướng dẫn giải, bài tập tự luận và trắc nghiệm các dạng toán về chủ đề Tổ hợp – Xác suất (Chương 2 – Đại số và Giải tích 11) Vấn đề 1. QUI TẮC ĐẾM + Dạng 1. Sử dụng các qui tắc để thực hiện bài toán đếm số phương án + Dạng 2. Sử dụng các qui tắc để thực hiện bài toán đếm số các hình thành từ tập A Vấn đề 2. HOÁN VỊ – CHỈNH HỢP – TỔ HỢP + Dạng 1. Thực hiện bài toán đếm theo hoán vị, tổ hợp, chỉnh hợp + Dạng 2. Rút gọn và tính các giá trị của biểu thức + Dạng 3. Chứng minh đẳng thức, bất đẳng thức + Dạng 4. Giải phương trình, hệ phương trình, bất phương trình Vấn đề 3. NHỊ THỨC NIU-TƠN + Dạng 1. Khai triển nhị thức Niu-tơn + Dạng 2. Giá trị của hệ số trong khai triển nhị thức Niu-tơn + Dạng 3. Tính tổng + Dạng 4. Chứng minh + Dạng 5. Giải phương trình, bất phương trình [ads] Vấn đề 4. BIẾN CỐ VÀ XÁC SUẤT CỦA BIẾN CỐ + Dạng 1. Mô tả không gian mẫu. Tìm số phần tử của không gian mẫu + Dạng 2. Xác định biết cố. Tính số phần tử của tập hợp này + Dạng 3. Tính xác suất của một biến cố Vấn đề 5. CÁC QUI TẮC TÍNH XÁC SUẤT + Dạng 1. Xác định tính xung khắc, độc lập + Dạng 2. Mô tả biến cố theo các phép toán hoặc phiên dịch thành lời + Dạng 3. Tìm xác suất của một biến cố bằng cách sử dụng công thức xác suất + Dạng 4. Tìm xác suất của biến cố là hợp của các biến cố xung khắc + Dạng 5. Tìm xác suất của biến cố là giao các biến cố độc lập Vấn đề 6. [NC] BIẾN NGẪU NHIÊN RỜI RẠC + Dạng 1. Xác định tập giá trị của một biến ngẫu nhiên rời rạc + Dạng 2. Lập bảng phân phối bố xác suất của biến ngẫu nhiên rời rạc + Dạng 3. Cho bảng phân phối bố xác suất của biến ngẫu nhiên + Dạng 4. Tính kì vọng, phương sai, độ lệch chuẩn của một biến ngẫu nhiên rời rạc BÀI TẬP TỔNG HỢP CHỦ ĐỀ TỔ HỢP – XÁC SUẤT VÀ BÀI TẬP TRONG CÁC ĐỀ THI ĐH – CĐ BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ TỔ HỢP – XÁC SUẤT BẢNG ĐÁP ÁN TRẮC NGHIỆM