Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lớp 8 môn Toán năm 2017 2018 phòng GD ĐT Duy Xuyên Quảng Nam

Nội dung Đề HSG lớp 8 môn Toán năm 2017 2018 phòng GD ĐT Duy Xuyên Quảng Nam Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 8 năm 2017-2018 phòng GD&ĐT Duy Xuyên - Quảng Nam Đề thi HSG Toán lớp 8 năm 2017-2018 phòng GD&ĐT Duy Xuyên - Quảng Nam Chào các thầy cô giáo và các em học sinh lớp 8! Hôm nay mình xin giới thiệu đến các bạn đề thi HSG Toán lớp 8 năm 2017 - 2018 từ phòng GD&ĐT Duy Xuyên - Quảng Nam. Đề thi này bao gồm đáp án, lời giải chi tiết và hướng dẫn cách chấm điểm. Vấn đề đầu tiên trong đề thi là về vận tốc của một vật thể di chuyển từ A đến B theo quy tắc nhất định, dừng lại sau mỗi quãng đường cố định trong một khoảng thời gian nhất định. Bài toán yêu cầu tính khoảng cách từ A đến B dựa vào các thông tin đã được cung cấp. Bài toán thứ hai liên quan đến tam giác ABC, trong đó BD là phân giác. Chúng ta cần chứng minh APQR là hình thang cân và tính độ dài của AR dựa vào độ dài hai cạnh AB và AC đã biết trước. Bài toán cuối cùng đưa ra một hình bình hành ABCD, và yêu cầu chứng minh một số tính chất của các đường thẳng đi qua các đỉnh của hình bình hành. Đề thi này mang đến những bài toán thú vị và giúp các em rèn luyện kỹ năng giải toán, logic và suy luận. Hy vọng rằng đề thi này sẽ giúp ích cho các em trong việc ôn tập và nâng cao kiến thức toán học của mình. Chúc các em may mắn và thành công trên bước đường học tập!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT thành phố Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 THCS năm học 2021 – 2022 phòng Giáo dục và Đào tạo thành phố Ninh Bình, tỉnh Ninh Bình.
Đề học sinh năng khiếu Toán 8 năm 2021 - 2022 phòng GDĐT Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra học sinh năng khiếu môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Thanh Trì, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 15 tháng 04 năm 2022. Trích dẫn đề học sinh năng khiếu Toán 8 năm 2021 – 2022 phòng GD&ĐT Thanh Trì – Hà Nội : + Cho ABC có độ dài các cạnh lần lượt là a, b, c; chu vi của tam giác là 2p. Chứng minh rằng? + Cho đoạn thẳng AB và một điểm M bất kì trên đoạn thẳng đó (M khác A và B). Trên cùng một nửa mặt phẳng bờ AB dựng hai hình vuông AMCD và BMEF có tâm đối xứng lần lượt là hai điểm O và I. Gọi N là giao điểm của AE và BC, P là giao điểm của AC và BE. a) Chứng minh: E là trực tâm của ABC từ đó suy ra BC vuông góc với AE. b) Chứng minh ba điểm D, N, F thẳng hàng. c) Gọi K là giao điểm của AC và MN. Chứng minh: AP.CK = AK.CP d) Xác định vị trí của điểm M trên đoạn thẳng AB sao cho đoạn thẳng MN có độ dài lớn nhất. + Người ta dùng các số 1, 2, 3, 4, 5, 6, 7, 8 để gán cho các đỉnh của một hình lập phương, hai đỉnh khác nhau thì gán các số khác nhau. Sau đó tính tổng ở hai đỉnh kề nhau. Chứng minh rằng có ít nhất hai tổng bằng nhau?
Đề HSG huyện Toán 8 năm 2021 - 2022 phòng GDĐT Thuận Thành - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện cấp THCS môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND huyện Thuận Thành, tỉnh Bắc Ninh; kỳ thi được diễn ra vào thứ Tư ngày 13 tháng 04 năm 2022. Trích dẫn đề HSG huyện Toán 8 năm 2021 – 2022 phòng GD&ĐT Thuận Thành – Bắc Ninh : + Cho x y z là các số thực dương thoả mãn điều kiện: x + y + z = x.y.z. Chứng minh rằng? + Cho hình bình hành ABCD, lấy điểm M trên BD sao cho MB khác MD. Đường thẳng qua M và song song với AB cắt AD và BC lần lượt tại E và F. Đường thẳng qua M và song song với AD cắt AB và CD lần lượt tại K và H. 1. Chứng minh: KF // EH. 2. Chứng minh: các đường thẳng EK, HF, BD đồng quy. 3. Chứng minh: S_MKAE = S_MHCF. + Giả sử số A được viết bởi 2n chữ số 1; số B được viết bởi n chữ số 4 với n là số nguyên dương bất kỳ. Chứng minh rằng số A + B + 1 bằng bình phương của một số nguyên.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Duy Tiên - Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra chất lượng học sinh giỏi môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo thị xã Duy Tiên, tỉnh Hà Nam. Trích dẫn đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Duy Tiên – Hà Nam : + Cho ba số x, y, z khác 0 thỏa mãn điều kiện. Chứng minh rằng trong ba số x, y, z tồn tại hai số đối nhau. + Cho đa thức f(x). Biết dư trong các phép chia f(x) cho x – 1 và x + 1 lần lượt là 1 và 3. Hãy tìm dư trong phép chia f(x) cho x2 – 1. + Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N. a) Chứng minh rằng tứ giác AEMD là hình chữ nhật. b) Biết diện tích tam giác BCH gấp bốn lần diện tích tam giác AEH. Chứng minh rằng: AC = 2EF. c) Chứng minh rằng AD2 AM2 AN2.