Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu lớp 9 môn Toán chủ đề một số hệ thức về cạnh và đường cao trong tam giác vuông

Nội dung Tài liệu lớp 9 môn Toán chủ đề một số hệ thức về cạnh và đường cao trong tam giác vuông Bản PDF - Nội dung bài viết Tài liệu học Toán lớp 9 - Hệ thức về cạnh và đường cao trong tam giác vuôngTóm tắt lý thuyếtBài tập và các dạng toánDạng 1: Tính độ dài các đoạn thẳng trong tam giác vuôngDạng 2: Tính chu vi, diện tích các hìnhDạng 3: Chứng minh các hệ thức liên quan đến tam giác vuông Tài liệu học Toán lớp 9 - Hệ thức về cạnh và đường cao trong tam giác vuông Tài liệu này bao gồm 43 trang, cung cấp kiến thức cần thiết, các dạng toán và bài tập liên quan đến cạnh và đường cao trong tam giác vuông trong chương trình môn Toán lớp 9. Đồng thời, tài liệu cũng đi kèm với đáp án và lời giải chi tiết. Tóm tắt lý thuyết Khi giải các bài toán về cạnh và đường cao trong tam giác vuông, việc nắm vững các kiến thức về định lý Talet, về đồng dạng của tam giác là rất quan trọng. Cần phải hiểu rõ các hệ thức sau: Hệ thức giữa cạnh góc vuông và hình chiếu: Bình phương mỗi cạnh góc vuông bằng tích của cạnh huyền và hình chiếu của cạnh góc vuông đó trên cạnh huyền. Hệ thức liên quan tới đường cao: Bình phương đường cao ứng với cạnh huyền bằng tích của hai hình chiếu của hai cạnh góc vuông trên cạnh huyền. Bài tập và các dạng toán Dạng 1: Tính độ dài các đoạn thẳng trong tam giác vuông Để giải bài toán này, các bước cơ bản như sau: Xác định vai trò của đoạn thẳng đã biết và đoạn thẳng cần tính trong tam giác vuông. Lựa chọn công thức tính phù hợp dựa trên các kiến thức đã học. Dạng 2: Tính chu vi, diện tích các hình Để tính chu vi, diện tích các hình, bạn cần làm các bước sau: Xác định hình cần tính chu vi, diện tích. Viết công thức tính chu vi, diện tích của hình đó. Dạng 3: Chứng minh các hệ thức liên quan đến tam giác vuông Để chứng minh các hệ thức liên quan đến tam giác vuông, bạn cần áp dụng các hệ thức về cạnh và đường cao theo các bước: Chọn tam giác vuông thích hợp chứa các đoạn thẳng cần chứng minh. Tính các đoạn thẳng cần chứng minh bằng các hệ thức về cạnh và đường cao. Trong tài liệu còn đi kèm bài tập trắc nghiệm và bài tập về nhà để giúp bạn ôn tập kiến thức. File Word dành cho giáo viên có thể tải xuống!

Nguồn: sytu.vn

Đọc Sách

Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa phép nhân và phép khai phương
Nội dung Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa phép nhân và phép khai phương Bản PDF - Nội dung bài viết Tài liệu học Toán lớp 9 chủ đề liên hệ giữa phép nhân và phép khai phương Tài liệu học Toán lớp 9 chủ đề liên hệ giữa phép nhân và phép khai phương Tài liệu này bao gồm 19 trang với các kiến thức cần nhớ, các dạng toán và bài tập liên quan đến chủ đề giữa phép nhân và phép khai phương trong môn Toán lớp 9. Mỗi phần bài tập đều có đáp án và lời giải chi tiết để học sinh có thể tự kiểm tra và tự học. A. Tóm tắt lý thuyết: Định lý: Phép nhân của hai số a và b (a, b > 0) có thể được biểu diễn dưới dạng phép khai phương: ab = a √b. Quy tắc khai phương một tích: Khi nhân hai số a và b (a, b ≥ 0) ta có: √(ab) = √a * √b. Quy tắc nhân các căn bậc hai: Khi nhân hai biểu thức A và B (A, B ≥ 0) ta có: √A * √B = √(AB). B. Bài tập và các dạng toán: Dạng 1: Tính giá trị của biểu thức sử dụng công thức khai phương một tích. Dạng 2: Rút gọn biểu thức bằng cách áp dụng công thức khai phương của một tích. Dạng 3: Giải phương trình chứa căn thức, cần chú ý đến điều kiện đi kèm. Dạng 4: Chứng minh đẳng thức bằng cách áp dụng bất đẳng thức Côsi cho các số không âm. Bài tập trắc nghiệm và bài tập về nhà được cung cấp để học sinh tự luyện tập. File Word cũng được cung cấp để giáo viên dễ dàng sử dụng và chỉnh sửa khi cần thiết. Thông qua tài liệu này, học sinh sẽ nắm vững kiến thức và kỹ năng để áp dụng phép nhân và phép khai phương hiệu quả trong việc giải các bài toán và ứng dụng trong thực tế.
Tài liệu lớp 9 môn Toán chủ đề rút gọn biểu thức chứa căn thức bậc hai
Nội dung Tài liệu lớp 9 môn Toán chủ đề rút gọn biểu thức chứa căn thức bậc hai Bản PDF - Nội dung bài viết Tài liệu Tối ƒnghiệp về Rút Gọn Biểu Thông Chứa Căn Thức Bậc Hai Tài liệu Tối ƒnghiệp về Rút Gọn Biểu Thông Chứa Căn Thức Bậc Hai Tài liệu này được thiết kế đặc biệt cho học sinh lớp 9, cung cấp kiến thức cơ bản và bài tập thực hành về chủ đề rút gọn biểu thức chứa căn thức bậc hai trong môn Toán. Tài liệu gồm tổng cộng 22 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập hướng dẫn chi tiết. Kiến Thức Cần Nhớ: Quy trình rút gọn biểu thức chứa căn thức bậc hai bao gồm các bước sau: Tìm điều kiện xác định của biểu thức. Phân tích tử số và mẫu số thành nhân tử rồi rút gọn nếu có thể. Quy đồng. Phá ngoặc bằng cách nhân khai trển các hạng tử với nhau hoặc khi triển hằng đẳng thức. Thu gọn bằng cách cộng, trừ các hạng tử đồng dạng. Phân tích tử thành nhân tử. Rút gọn lần cuối. Các Dạng Toán: Trong tài liệu này, học sinh sẽ được hướng dẫn về các dạng toán sau: Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biểu thức khi biết giá trị của biến. Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biến khi biết giá trị của biểu thức. Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biến để biểu thức nhận giá trị nguyên. Rút gọn biểu thức chứa căn bậc hai và so sánh biểu thức với một số (hoặc một biểu thức khác). Rút gọn biểu thức chứa căn bậc hai và tìm giá trị nhỏ nhất hoặc lớn nhất của biểu thức. Bài Tập Tổng Hợp: Tài liệu cũng cung cấp một loạt bài tập trắc nghiệm và tự luyện để học sinh có thể ôn tập và áp dụng kiến thức đã học vào thực tế. Để thuận tiện cho việc sử dụng, tài liệu còn được cung cấp dưới dạng file Word cho quý thầy, cô giáo có thể sử dụng để in và phát cho học sinh. Với tài liệu này, học sinh sẽ có cơ hội nâng cao kiến thức và kỹ năng giải toán rút gọn biểu thức chứa căn thức bậc hai một cách hiệu quả.
Tóm tắt lý thuyết và một số dạng toán đường tròn Nguyễn Ngọc Dũng
Nội dung Tóm tắt lý thuyết và một số dạng toán đường tròn Nguyễn Ngọc Dũng Bản PDF Nội dung của tài liệu được biên soạn bởi thầy giáo Nguyễn Ngọc Dũng, tóm tắt lý thuyết và một số dạng toán đường tròn, nhằm giúp học sinh lớp 9 hiểu tốt chương trình Hình học 9 chương 2 từ sách giáo khoa Toán lớp 9 tập 1. Tài liệu gồm 17 trang, chia thành các phần như sau:1. Sự xác định đường tròn và tính chất đối xứng của đường tròn: Phần này giúp học sinh hiểu cách chứng minh các điểm cùng thuộc một đường tròn, cách chứng minh các điểm đã cho cách đều một điểm, và tính chất của tâm của đường tròn ngoại tiếp tam giác vuông là trung điểm của cạnh huyền.2. Đường kính và dây của đường tròn, liên hệ giữa dây và khoảng cách từ tâm đến dây: Phần này giúp học sinh hiểu cách chứng minh hai đoạn thẳng bằng nhau, hai dây bằng nhau, và mối quan hệ giữa các đoạn thẳng trong đường tròn. 3. Vị trí tương đối của đường tròn và đường thẳng, tiếp tuyến của đường tròn: Phần này giúp học sinh hiểu cách tính độ dài một đoạn tiếp tuyến, cách chứng minh một đường thẳng là tiếp tuyến của đường tròn, và tính chất của hai tiếp tuyến cắt nhau.4. Vị trí tương đối của hai đường tròn: Phần này giúp học sinh hiểu vị trí của hai đường tròn đối với nhau và các tính chất liên quan.Tài liệu này đem đến cho học sinh những kiến thức cơ bản và quan trọng về đường tròn, giúp họ hiểu rõ hơn về chương trình Hình học lớp 9 và có thể áp dụng vào việc giải các bài toán liên quan. Nhờ cách trình bày cụ thể và dễ hiểu, tài liệu sẽ giúp học sinh nắm vững kiến thức một cách hiệu quả.
Chuyên đề rút gọn biểu thức và các bài toán liên quan Trần Đình Cư
Nội dung Chuyên đề rút gọn biểu thức và các bài toán liên quan Trần Đình Cư Bản PDF - Nội dung bài viết Tài liệu Chuyên đề rút gọn biểu thức và các bài toán liên quan của thầy Trần Đình Cư Tài liệu Chuyên đề rút gọn biểu thức và các bài toán liên quan của thầy Trần Đình Cư Tài liệu này bao gồm 32 trang, được biên soạn bởi thầy giáo Trần Đình Cư, cung cấp kiến thức cần nắm về phân loại và phương pháp giải bài tập chuyên đề rút gọn biểu thức và các bài toán liên quan. Tài liệu cũng đi kèm đáp án và lời giải chi tiết, giúp học sinh lớp 9 tham khảo khi học chương trình. Đây là tài liệu hữu ích giúp học sinh nắm vững kiến thức và áp dụng vào việc giải các bài tập dạng này một cách hiệu quả.