Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các bài toán chọn lọc trong hệ tọa độ Oxyz (phần 2) - Nguyễn Xuân Chung

Tài liệu gồm 99 trang, được biên soạn bởi thầy giáo Nguyễn Xuân Chung, tuyển chọn và hướng dẫn phương pháp giải các bài toán chọn lọc trong hệ tọa độ Oxyz (phần 2), giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian. PHẦN 2 : CÁC BÀI TOÁN TẬP HỢP ĐIỂM; GTLN – GTNN. Trong phần 2 này chúng ta nghiên cứu các bài toán có nội dung về quỹ tích và giá trị lớn nhất, giá trị nhỏ nhất. Thông thường: Các bài toán tập hợp điểm cũng chính là các bài toán về min – max bởi vì khi tập hợp điểm thỏa mãn điều kiện nhất định thì sẽ đạt min – max. Tuy nhiên: Bài toán tập hợp điểm thiên về vị trí tương đối và tính toán, còn bài toán về min – max thiên về khảo sát hàm số và bất đẳng thức. Từ đó chúng ta cũng thấy được phương pháp giải có đặc trưng riêng. + Bài toán tập hợp điểm: Thường sử dụng phương pháp véc tơ, các định lý trong tam giác, hình bình hành, sự đối xứng, song song, vuông góc. + Bài toán min – max: Thường sử dụng phương pháp khử dần ẩn (Thêm biến, đổi biến, dồn biến), khảo sát cực trị, bất đẳng thức B.C.S, Mincopxki. Như vậy trong phần này các bài toán có mức độ Vận dụng – Vận dụng cao. Để giải nhanh thì chúng ta không chỉ nắm vững kiến thức mà còn sử dụng một số công thức tính nhanh, kỹ năng sử dụng CASIO. Nếu chỉ làm tự luận thì cũng có kết quả nhưng thi trắc nghiệm thì thời gian không nhiều!. Các em cần tính tổng thời gian của quy trình giải một bài toán khó như sau: + Đọc hiểu đề và yêu cầu của bài toán: Đọc để hiểu nội dung của bài toán là gì? + Tái hiện kiến thức: Trong bài toán chúng ta cần thiết những kiến thức nào? + Xác định các yếu tố cần giải: Chẳng hạn mặt cầu thì cần biết tâm, bán kính. + Biến đổi, tính toán: Đây là quy trình cuối cùng dẫn đến kết quả và trả lời, có nhiều khi phải vẽ hình minh họa thì càng mất nhiều thời gian. Trong phần này, các bài toán có chọn lọc và được biên soạn theo chủ đề: Điểm – mặt phẳng, Điểm – Mặt cầu, Điểm – Đường thẳng, và tổ hợp của các yếu tố trên. Trong phần 1, tôi đã đưa ra một số kiến thức bổ xung và công thức tính nhanh, nên phần này tôi không nêu ra. Tuy nhiên, trong phần này cũng có kiến thức bổ xung hữu ích để giúp chúng ta giải nhanh, từ đó mới tiết kiệm được thời gian toàn bài thi. Đặc biệt trong phần này ta nghiên cứu bài toán mà tạm gọi là “Định luật phản xạ ánh sáng đối với gương phẳng”. I. BỔ XUNG ‐ BÀI TOÁN VỀ TÂM TỈ CỰ. II. BÀI TOÁN VỀ TỔ HỢP VÉC TƠ. III. BÀI TOÁN VỀ QUỸ TÍCH – VỊ TRÍ TƯƠNG ĐỐI. IV. BÀI TOÁN VỀ TỔNG – HIỆU KHOẢNG CÁCH. V. BÀI TOÁN TỔNG HỢP CUỐI PHẦN 2. VI. PHỤ LỤC.

Nguồn: toanmath.com

Đọc Sách

Giải bài toán hình học không gian bằng phương pháp tọa độ - Trần Đình Cư
Tài liệu gồm 37 trang với 46 bài toán thuộc chuyên đề phương pháp tọa độ trong không gian được phân tích và giải chi tiết, tài liệu do thầy Trần Đình Cư biên soạn. Trích dẫn tài liệu : + Cho hình lăng trụ đứng ABC.A’B’C’, đáy ABC là tam giác vuông tại A, AB = a, AC = 2a, AA’ = b. Gọi M, N lần lượt là trung điểm của BB’ và AB. a. Tính theo a và b thể tích của tứ diện A’CMN b. Tính tỉ số b/a để B’C ⊥ AC’ [ads] + Cho khối lập phương ABCD.A’B’C’D’ có cạnh bằng 1. Gọi M, N, P lần lượt là trung điểm của các cạnh A’B’, BC, DD’. a. Tính góc giữa hai đường thẳng AC’ và A’B. b. Chứng minh AC’ ⊥ (MNP) và tính thể tích của khối tứ diện AMNP. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAD là tam giác đều và nằm trong mặt phẳng vuông góc với (ABCD). Gọi M, N, P lần lượt là trung điểm của SB, BC, CD. Chứng minh rằng AM ⊥ BP và tính thể tích của khối tứ diện CMNP.
Ứng dụng phương pháp tọa độ để giải các bài toán hình học không gian
Tài liệu cung cấp cách gắn hệ trục tọa độ Oxyz vào các khối đa diện thường gặp. Các ví dụ minh họa điển hình kèm theo giải thích chi tiết sẽ giúp bạn đọc nắm kĩ hơn về kĩ thuật tọa độ hóa. Bước 1 . Chọn hệ trục tọa độ Oxyz trong không gian Ta có: Ox, Oy, Oz vuông góc với nhau từng đôi một. Do đó, nếu hình vẽ bài toán cho có chứa các cạnh vuông góc thì ta ưu tiên chọn các cạnh đó làm trục tọa độ. Cụ thể: Với hình lập phương hoặc hình hộp chữ nhật ABCD.A’B’C’D’ Với hình lập phương Chọn hệ trục tọa độ sao cho: A(0; 0; 0); B(a; 0; 0); C(a; a; 0); D(0; a; 0) A’(0; 0; a); B’(a; 0; a); C’(a; a; 0); D’(0; a; a) Với hình hộp chữ nhật Chọn hệ trục tọa độ sao cho: A(0; 0; 0); B(a; 0; 0); C(a; b; 0); D(0; b; 0) A’(0; 0; c); B’(a; 0; c); C’(a; b; c); D’(0; b; c) Với hình hộp đáy là hình thoi ABCD.A’B’C’D’ Chọn hệ trục tọa độ sao cho: + Gốc tọa độ trùng với giao điểm O của hai đường chéo của hình thoi ABCD + Trục Oz đi qua 2 tâm của 2 đáy [ads] Với hình chóp tứ giác đều S.ABCD Với hình chóp tam giác đều S.ABC Với hình chóp S.ABCD có ABCD là hình chữ nhật và SA ⊥ (ABCD) Với hình chóp S.ABC có ABCD là hình thoi và SA ⊥ (ABCD) Với hình chóp S.ABC có SA ⊥ (ABC) và Δ ABC vuông tại A Với hình chóp S.ABC có SA ⊥ (ABC) và Δ ABC vuông tại B Với hình chóp S.ABC có (SAB) ⊥ (ABC), Δ SAB cân tại S và Δ ABC vuông tại C Với hình chóp S.ABC có (SAB) ⊥ (ABC), Δ SAB cân tại S và Δ ABC vuông tại A Bước 2 . Sử dụng các kiến thức về tọa độ để giải quyết bài toán Các dạng câu hỏi thường gặp: Khoảng cách, góc, diện tích thiết diện, thể tích khối đa diện Một số kiến thức Hình học bổ sung Bài tập vận dụng
Phương pháp tọa độ hóa để giải bài toán hình học không gian - Nguyễn Hồng Điệp
Tài liệu gồm 16 trang hướng dẫn phương pháp tọa độ hóa để giải các bài toán hình học không gian, tài liệu do thầy Nguyễn Hồng Điệp biên soạn. Nội dung tài liệu : 1. Các công thức 2. Xác định tọa độ điểm 3. Cách chọn hệ trục tọa độ – chọn véctơ + Chọn véctơ Đối với dạng bài tập này khi tìm véctơ chỉ phương, véctơ pháp tuyến của đường thẳng và mặt phẳng ta sẽ gặp trường hợp véctơ chứa tham số a là độ dài cạnh. Khi đó, để tiện cho việc tính toán ta chọn lại véctơ chỉ phương, véctơ pháp tuyến mất tham số a. [ads] + Chọn hệ trục tọa độ Phần quan trọng nhất của phương pháp này là cách chọn hệ trục tọa độ. Không có phương pháp tổng quát, có nhiều hệ trục tọa độ có thể được chọn, chúng ta chọn sao cho việc tìm tọa độ các điểm có nhiều số 0 càng tốt. • Hệ trục tọa độ nằm trên 3 đường thẳng đôi 1 vuông góc nhau. • Gốc tọa độ thường là chân đường cao của hình chóp, hình lăng trụ trùng với đỉnh của hình vuông, hình chữ nhật, tam giác vuông hoặc có thể là trung điểm của cạnh nào đó. 4. Các ví dụ
Hình học giải tích không gian - Đặng Thành Nam
Tài liệu gồm 42 trang gồm lý thuyết, hướng dẫn giải và bài tập tự luận chủ đề hình học giải tích không gian. + Kiến thức cần nhớ: Lý thuyết cơ bản và các công thức tính + Ví dụ mẫu: Có lời giải chi tiết + Bài tập tự rèn luyện: Có đáp số [ads] Trích dẫn tài liệu : + Trong không gian với hệ trục tọa độ Oxyz cho hai mặt phẳng (P1), (P2) có các phương trình tương ứng là 2x – y + 2z – 1 = 0 và 2x – y + 2z + 5 = 0 và điểm A (-1; 1; 1) nằm trong khoảng giữa hai mặt phẳng đó. Gọi (S) là mặt cầu bất kỳ qua A và tiếp xúc với cả hai mặt phẳng (P1) và (P2). Gọi I là tâm của mặt cầu (S). Chứng tỏ rằng I thuộc một đường tròn cố định. Xác định tọa độ tâm và tính bán kính của đường tròn đó. + Cho hình lập phương ABCD.A’B’C’D’ cạnh bằng a. Gọi M, N lần lượt là trung điểm của BC và DD’. (i). Chứng minh rằng MN // (A’BD) (ii). Tính khoảng cách giữa BD và MN theo a + Viết phương trình mặt phẳng (Q) đi qua A(2, 4, 3) và song song với mặt phẳng (P): 2x – 3y + 6z + 19 = 0. Tính khoảng cách giữa hai mặt phẳng (P) và (Q). Hạ AH ⊥ (P). Xác định tọa độ điểm H.