Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giữa học kì 1 Toán 9 năm 2023 - 2024 phòng GDĐT Lục Ngạn - Bắc Giang

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 1 môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Lục Ngạn, tỉnh Bắc Giang; đề thi hình thức 30% trắc nghiệm + 70% tự luận (theo điểm số), thời gian làm bài 90 phút (không kể thời gian phát đề). Trích dẫn Đề giữa học kì 1 Toán 9 năm 2023 – 2024 phòng GD&ĐT Lục Ngạn – Bắc Giang : + Cho ∆ABC vuông tại A, đường cao AH. 1. Biết BH cm 4 và HC cm 6. Tính độ dài các đoạn AH AB và Sin ACH 2. Trên đoạn thẳng AC lấy điểm M bất kì M AM C. Gọi E là chân đường vuông góc kẻ từ C đến đường thẳng BM. Chứng minh bốn điểm A, B, C, E cùng thuộc một đường tròn. 3. Gọi I là hình chiếu của A trên đường thẳng BM. Chứng minh: BIH BCA. + Cho hàm số y m xm 3 1 (m là tham số) có đồ thị là đường thẳng (d). Tìm giá trị của tham số m để đường thẳng (d) cắt hai trục Ox Oy lần lượt tại hai điểm A B sao cho ∆OAB có diện tích bằng 1 (đơn vị diện tích). + Cho tam giác ABC vuông tại A tâm đường tròn ngoại tiếp tam giác ABC là A. trung điểm của BC. B. trung điểm của AC. C. trung điểm của AB. D. giao điểm của ba đường phân giác.

Nguồn: toanmath.com

Đọc Sách

Đề giữa học kì 1 Toán 9 năm 2022 - 2023 trường THCS Phúc Đồng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 1 môn Toán 9 năm học 2022 – 2023 trường THCS Phúc Đồng, quận Long Biên, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 09 tháng 11 năm 2022 (Tiết PPCT: 19 + 20). Trích dẫn Đề giữa học kì 1 Toán 9 năm 2022 – 2023 trường THCS Phúc Đồng – Hà Nội : + Tính chiều cao của một cột tháp, biết rằng lúc tia sáng của mặt trời tạo với phương nằm ngang của mặt đất một góc bằng 50 thì bóng của nó trên mặt đất dài 96m. + Cho tam giác ABC vuông tại A, đường cao AH, biết AB = 3cm, BC = 6cm. a) Giải tam giác vuông ABC b) Tính HB, HC c)Từ H kẻ HE vuông góc AB; HF vuông góc AC (E thuộc AB; F thuộc AC). Chứng minh rằng EA.EB + AF.FC = (HE/sin HAE)2. + Cho x, y là các số thực dương thỏa mãn điều kiện: x + y ≤ 6. Tìm giá trị nhỏ nhất của biểu thức: P = x + y + 6/x + 24/y.
Đề giữa học kì 1 Toán 9 năm 2022 - 2023 phòng GDĐT Bình Giang - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 1 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Bình Giang, tỉnh Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giữa học kì 1 Toán 9 năm 2022 – 2023 phòng GD&ĐT Bình Giang – Hải Dương : + Cho tam giác ABC, BC = 6cm, 0 B 60, AB = 4cm, kẻ đường cao AH H BC. Tính: 1) AH, HB, AC (Độ dài đoạn thẳng không cần làm tròn số) 2) Số đo các góc ACB, BAC (Số đo góc làm tròn đến độ, học sinh được sử dụng máy tính cầm tay hoặc bảng số). + Cho các số x, y, z không âm. Chứng minh rằng: 3 33 xyz xyz.
Đề giữa kỳ 1 Toán 9 năm 2022 - 2023 trường THCS Nguyễn Du - Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 1 môn Toán 9 năm học 2022 – 2023 trường THCS Nguyễn Du, huyện Diên Khánh, tỉnh Khánh Hòa; đề thi được biên soạn theo hình thức 30% trắc nghiệm + 70% tự luận, thời gian học sinh làm bài thi là 90 phút.
Đề giữa kì 1 Toán 9 năm 2022 - 2023 trường THCS Phương Mai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 1 môn Toán 9 năm học 2022 – 2023 trường THCS Phương Mai, quận Đống Đa, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 05 tháng 11 năm 2022. Trích dẫn Đề giữa kì 1 Toán 9 năm 2022 – 2023 trường THCS Phương Mai – Hà Nội : + Tính chiều cao của một cột tháp (làm tròn đến mét), biết rằng lúc tia sáng của mặt trời tạo với phương nằm ngang của mặt đất một góc bằng 51° thì bóng của nó trên mặt đất dài 48m (làm tròn đến mét). + Cho tam giác ABC vuông tại A (AB < AC), đường cao AH (H thuộc BC). Vẽ HM vuông góc với AB tại M, HN vuông góc với AC tại N. a) Cho biết AB = 6cm, AC = 8cm. Tính các độ dài BC, AH và số đo các góc B, C. b) Chứng minh AM.AB = AN.AC. c) Qua A kẻ đường thẳng vuông góc với MN cắt BC tại D. Chứng minh D là trung điểm của BC. + Cho các số thực dương a, b thỏa mãn ab > 2021a + 2022b. Chứng minh: a + b > (2021 + 2022)2.