Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh năng khiếu lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thanh Sơn Phú Thọ

Nội dung Đề học sinh năng khiếu lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thanh Sơn Phú Thọ Bản PDF - Nội dung bài viết Đề học sinh năng khiếu lớp 8 môn Toán năm 2022-2023 phòng GD ĐT Thanh Sơn Phú Thọ Đề học sinh năng khiếu lớp 8 môn Toán năm 2022-2023 phòng GD ĐT Thanh Sơn Phú Thọ Sytu hân hạnh giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh năng khiếu cấp huyện môn Toán lớp 8 năm học 2022 – 2023 của phòng Giáo dục và Đào tạo huyện Thanh Sơn, tỉnh Phú Thọ. Đề thi được thiết kế với hình thức 40% trắc nghiệm khách quan và 60% tự luận. Thời gian làm bài là 120 phút, không tính thời gian giao đề. Đề thi đi kèm đáp án và lời giải chi tiết. Trích dẫn Đề học sinh năng khiếu Toán lớp 8 năm 2022 – 2023 phòng GD&ĐT Thanh Sơn – Phú Thọ: - Thí sinh chỉ cần chọn một đáp án đúng trong phần trắc nghiệm khách quan. Toán cấp huyện Phú Thọ, lớp 8, một bài toán được đưa ra như sau: Cho tam giác ABC, các đường trung tuyến BD và CE. Lấy M, N trên BC sao cho BM = MN = NC. Gọi I là giao điểm của AM và BD, K là giao điểm của AN và CE. Biết BC = 10cm, hỏi độ dài IK là bao nhiêu? - Để lập đội tuyển năng khiếu bóng rổ, nhà trường quy định rằng mỗi thí sinh cần ném 10 quả bóng vào rổ. Mỗi quả bóng ném vào rổ sẽ được cộng 4 điểm, còn nếu ném ra ngoài sẽ bị trừ 2 điểm. Để được chọn vào đội tuyển, một học sinh cần ít nhất bao nhiêu quả bóng ném vào rổ? - Trong một câu hỏi khác, đề thi yêu cầu học sinh chứng minh một số khẳng định về tam giác nhọn ABC và mối liên hệ giữa các đường cao, đường trung tuyến, và tâm đường tròn ngoại tiếp tam giác. Đề thi Toán năm 2022-2023 của phòng GD ĐT Thanh Sơn Phú Thọ không chỉ đánh giá kiến thức mà còn khuyến khích học sinh phát triển kỹ năng logic, tư duy toán học và khả năng giải quyết vấn đề. Chúc các em học sinh đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi Olympic Toán 8 năm 2022 - 2023 phòng GDĐT Thanh Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thanh Oai, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 8 năm 2022 – 2023 phòng GD&ĐT Thanh Oai – Hà Nội : + Một xí nghiệp dự định sản xuất 2000 sản phẩm trong 40 ngày. Nhưng nhờ tổ chức hợp lý nên thực tế xí nghiệp đã sản xuất mỗi ngày vượt mức 10 sản phẩm. Do đó xí nghiệp sản xuất không những vượt mức dự định 100 sản phẩm mà còn hoàn thành trước thời hạn. Xí nghiệp đã rút ngắn được số ngày hoàn thành công việc là? + Cho hình vuông ABCD trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N 1) Chứng minh DM = AF và tứ giác AEMD là hình chữ nhật 2) Biết diện tích tam giác BCH gấp bốn lần diện tích tam giác AEH. Chứng minh rằng CBH AEH và AC EF 2 3) Chứng minh rằng : 2 1 1 AD AM AN. + Tính độ dài của một chiếc hộp hình lập phương, biết rằng độ dài mỗi cạnh của hộp tăng thêm 2 cm thì diện tích phải sơn 6 mặt bên ngoài của hộp đó tăng thêm 216 cm2.
Đề thi HSG Toán 8 cấp huyện năm 2022 - 2023 phòng GDĐT Sơn Động - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Sơn Động, tỉnh Bắc Giang; đề thi hình thức 60% trắc nghiệm + 40% tự luận, thời gian làm bài 120 phút (không kể thời gian giao đề); đề thi có đáp án và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2023. Trích dẫn Đề thi HSG Toán 8 cấp huyện năm 2022 – 2023 phòng GD&ĐT Sơn Động – Bắc Giang : + Một người thợ sử dụng thước ngắm có góc vuông để đo chiều cao của một cây dừa, với các kích thước đo được như hình bên. Khoảng cách từ vị trí gốc cây đến vị trí chân của người thợ là 4,8m và từ vị trí chân đứng thẳng trên mặt đất đến mắt của người ngắm là 1,6m. Hỏi với các kích thước trên thì người thợ đo được chiều cao của cây đó là bao nhiêu? (làm tròn đến mét). + Cho hình vuông ABCD cạnh a, một đường thẳng d bất kỳ đi qua C cắt AB tại E và AD tại F. 1) Chứng minh: BE DF BC CD. 2) Chứng minh: 2 2 BE AE BF AF. 3) Xác định vị trí của đường thẳng d để DF BE 4. + Năm nay, tuổi bố gấp 4 lần tuổi Hoàng. Nếu 5 năm nữa thì tuổi bố gấp 3 lần tuổi Hoàng. Hỏi năm nay Hoàng bao nhiêu tuổi?
Đề thi Olympic Toán 8 năm 2022 - 2023 phòng GDĐT Hoàng Mai - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND thị xã Hoàng Mai, tỉnh Nghệ An; đề thi hình thức tự luận, gồm 01 trang với 04 bài toán, thời gian làm bài 150 phút (không kể thời gian giao đề); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 8 năm 2022 – 2023 phòng GD&ĐT Hoàng Mai – Nghệ An : + Tìm số nguyên x, y thỏa mãn: x2 – xy – y + 4 =0. Tìm số tự nhiên n để: A = n3 – n2 – n – 2 là số nguyên tố. Cho biểu thức B = n3 + 2n2 + 2n + 1 (Với n là số nguyên dương). Chứng minh rằng B không là số chính phương. + Tìm giá trị nhỏ nhất của biểu thức B = x2 + 2y2 – 2xy + 4x – 10y + 20. Cho a, b là các thực thỏa mãn a.b > 0. Chứng minh rằng? + Cho đoạn thẳng AB cố định, trên cùng một nửa mặt phẳng bờ AB vẽ hai tia Ax và By cùng vuông góc với AB. Điểm C di chuyển trên tia Ax, D là trung điểm của AB. Vẽ AH vuông góc với CD, AH cắt BC và tia By lần lượt tại F và E. a) Chứng minh tam giác AHB đồng dạng với tam giác ADE. b) Chứng minh DE vuông góc với BC. c) Xác định vị trí của C trên tia Ax sao cho CF = 2.FB.
Đề thi Olympic Toán 8 năm 2022 - 2023 phòng GDĐT Đức Thọ - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Đức Thọ, tỉnh Hà Tĩnh; kỳ thi được diễn ra vào thứ Sáu ngày 24 tháng 03 năm 2023. Trích dẫn Đề thi Olympic Toán 8 năm 2022 – 2023 phòng GD&ĐT Đức Thọ – Hà Tĩnh : + Cho tam giác ABC có A = 120°, AB = 3 cm, AC = 6 cm. Tính độ dài đường phân giác AD. + Cho tam giác MNP đồng dạng với tam giác ABC biết AB = 15 cm; BC = 20 cm; CA = 30 cm. Tính độ dài các cạnh MN, NP và PM của tam giác MNP nếu chu vi của nó bằng 26 cm. + Bốn số thực a, b, c, d thỏa mãn a/2 = b/4 = c/6 = d/(8 + b). Hỏi giá trị nhỏ nhất của tổng S = a + b + c + d bằng bao nhiêu?