Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2017 - 2018 sở GDĐT Thanh Hóa

Ngày 10 tháng 03 năm 2018, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 khối THCS năm học 2017 – 2018, kỳ thi nhằm tuyển chọn những em học sinh lớp 9 có khả năng học tập môn Toán xuất sắc để tuyên dương và khen thưởng, làm mục tiêu phấn đấu cho học sinh tỉnh nhà, các em được chọn sẽ được tiếp tục bồi dưỡng để tham dự kỳ thi HSG Toán 9 cấp Quốc gia. Đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2017 – 2018 sở GD&ĐT Thanh Hóa với 05 bài toán dạng tự luận, thang điểm bài thi là 20 điểm, thời gian làm bài thi 150 phút, đề thi gồm có 01 trang, có hướng dẫn giải và biểu điểm. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2017 – 2018 sở GD&ĐT Thanh Hóa : + Cho a, b là các số nguyên dương thỏa mãn p = a^2 + b^2 là số nguyên tố và p – 5 chia hết cho 8. Giả sử x, y là các số nguyên thỏa mãn ax^2 – by^2 chia hết cho p. Chứng minh rằng cả hai số x, y chia hết cho p. + Biết phương trình (m – 2)x^2 – 2(m – 1)x + m = 0 có hai nghiệm tương ứng là độ dài hai cạnh góc vuông của một tam giác vuông. Tìm m để độ dài đường cao ứng với cạnh huyền của tam giác vuông đó bằng 2/√5. + Cho tam giác ABC có (O), (I), (Ia) theo thứ tự là các đường tròn ngoại tiếp, đường tròn nội tiếp và đường tròn bàng tiếp đối diện đỉnh A của tam giác với các tâm tương ứng là O, I, Ia. Gọi D là tiếp điểm của (I) với BC, P là điểm chính giữa cung BAC của (O), PIa cắt (O) tại điểm K. Gọi M là giao điểm của PO và BC, N là điểm đối xứng với P qua O. 1. Chứng minh IBIaC là tứ giác nội tiếp. 2. Chứng minh NIa là tiếp tuyến của đường tròn ngoại tiếp tam giác IaMP. 3. Chứng minh DAI = KAIa.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG Toán 9 năm 2020 - 2021 phòng GDĐT thành phố Hải Dương
Thứ Ba ngày 05 tháng 12 năm 2020, phòng Giáo dục và Đào tạo UBND thành phố Hải Dương tổ chức kỳ thi chọn học sinh giỏi lớp 9 môn Toán năm học 2020 – 2021. Đề thi chọn HSG Toán 9 năm 2020 – 2021 phòng GD&ĐT thành phố Hải Dương gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi chọn HSG Toán 9 năm 2020 – 2021 phòng GD&ĐT thành phố Hải Dương : + Cho a; b; c; d là các số nguyên thỏa mãn: 3a5 + 3b5 – 2c5 – 7d5 = 0. Chứng minh rằng: a + b – 4c – 9d chia hết cho 5. + Tìm các số tự nhiên x; y; z sao cho x3 + y3 = 2z3 và x + y + z là số nguyên tố. + Cho đường tròn tâm O đường kính BC = 2R. Lấy điểm H bất kỳ thuộc BC (H khác B, H khác C). Kẻ dây AF của đường tròn đi qua H và vuông góc với BC. Gọi AD là đường phân giác của tam giác ABC. a) Lấy điểm I thuộc HF, tia BI cắt (O) tại điểm thứ hai là K. Chứng minh rằng: BI.BK = AB^2. b) Chứng minh rằng: 2AH^2/AD^2 = 1 + 2AH/BC. c) Khi tam giác ABH có diện tích lớn nhất, tính góc ACB.
Đề thi chọn HSG Toán 9 năm 2020 - 2021 phòng GDĐT Quận 1 - TP HCM
Đề thi chọn HSG Toán 9 năm 2020 – 2021 phòng GD&ĐT Quận 1 – TP HCM gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 25 tháng 11 năm 2020. Trích dẫn đề thi chọn HSG Toán 9 năm 2020 – 2021 phòng GD&ĐT Quận 1 – TP HCM : + Vào tháng 2 năm 2020, khi đang vào mùa thu hoạch, giá tôm hùm bất ngờ giảm mạnh do dịch bệnh COVID-19 không xuất khẩu được. Ông A cho biết phải bán 30% số tôm với giá 450 nghìn đồng mỗi kilôgam. Sau đó nhờ phong trào “giải cứu tôm hùm” nên đã bán được số tôm còn lại với giá 720 nghìn đồng mỗi kilôgam. Biết rằng mỗi kilôgam tôm thu hoạch được ông A đã đầu tư hết 500 nghìn đồng và nếu trừ đi số tiền đầu tư này thì ông lãi được 69,5 triệu đồng. a) Hỏi khối lượng tôm hùm ông A thu hoạch được là bao nhiêu kilôgam. b) Ông A cũng cho biết thêm rằng nếu không có dịch COVD-19 thì thương lái sẽ mua hết số tôm hùm với giá 1,2 triệu đồng mỗi kilôgam. Hỏi ông A thu được lợi nhuận bao nhiêu khi bán hết số tôm hùm nói trên nếu không có dịch COVID-19? + Cho đường tròn (O) đường kính AB. Trên đường tròn (O) lấy điểm C sao cho AC > BC. Tiếp tuyến tại A của đường tròn (O) cắt đường thẳng BC tại D. Gọi I là trung điểm của AD. a) Chứng minh: AC vuông góc với BD và IC là tiếp tuyến của đường tròn (O). b) Gọi M và N lần lượt là hình chiếu của C trên AB và AD. Chứng minh: √MB.MC + √NC.ND = √AB.AD. c) BI cắt đường tròn (O) tại K. Chứng minh: BKC = IKD.
Đề thi HSG Toán 9 cấp huyện năm 2020 - 2021 phòng GDĐT Thanh Sơn - Phú Thọ
Đề thi HSG Toán 9 cấp huyện năm 2020 – 2021 phòng GD&ĐT Thanh Sơn – Phú Thọ gồm 02 trang với 16 câu trắc nghiệm và 04 câu tự luận, phần trắc nghiệm chiếm 8,0 điểm, phần tự luận chiếm 12,0 điểm, thời gian làm bài 150 phút, đề thi có đáp án và lời giải. Trích dẫn đề thi HSG Toán 9 cấp huyện năm 2020 – 2021 phòng GD&ĐT Thanh Sơn – Phú Thọ : + Nam chôn một cây cọc xuống đất để đo chiều cao của một cái cây trước nhà, cọc cao 2m và đặt cách cây một khoảng 15m. Từ chỗ cái cọc Nam lùi ra xa cách cọc 0,8m thì nhìn thấy đầu cọc và đỉnh cây nằm trên một đường thẳng. Biết khoảng cách từ chân đến mắt của Nam là 1,6m. Chiều cao của cái cây đó là? + Cho tam giác ABC có AB = 4cm, AC = 6cm, đường phân giác AD. Gọi O chia trong AD theo tỉ số AO:OD = 2:1. Gọi K là giao điểm của BO và AC. Tỉ số AK:KC là? + Cho tam giác ABC vuông tại A, phân giác AD (D thuộc BC), có AB = 10cm, AC = 15cm. Qua D kẻ đường thẳng song song với AB cắt AC tại E. Độ dài đoạn CE là?
Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 phòng GDĐT Đông Hà - Quảng Trị
Đề thi học sinh giỏi Toán 9 năm 2020 – 2021 phòng GD&ĐT Đông Hà – Quảng Trị gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2020 – 2021 phòng GD&ĐT Đông Hà – Quảng Trị : + Cho a, b, c là các số thực dương. Chứng minh rằng: 8(a + b + c)(ab + bc + ca) =< 9(a + b)(b + c)(c + a). + Cho hình vuông ABCD. Trên cạnh AB lấy điểm N; đường thẳng CN cắt DA tại E; đường thẳng vuông góc với CE tại C cắt AB tại F. Gọi M là trung điểm EF. 1. Chứng minh CM vuông góc với EF. 2. Chứng minh ba điểm B, D, M thẳng hàng. 3. Tìm vị trí của điểm N trên cạnh AB để diện tích của tứ giác AEFC gấp ba lần diện tích của hình vuông ABCD. + Tìm tất cả các số nguyên x, y, z thỏa mãn x3 + 3y3 + 9z3 = 12xyz.