Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 lần 1 năm 2023 - 2024 phòng GDĐT Xuân Trường - Nam Định

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Xuân Trường, tỉnh Nam Định; đề thi cấu trúc 20% trắc nghiệm + 80% tự luận, thời gian làm bài 120 phút; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 lần 1 năm 2023 – 2024 phòng GD&ĐT Xuân Trường – Nam Định : + Khoảng cách đường bộ từ cầu Lạc Quần đến cầu Đò Quan dài 25 km. Xe máy thứ nhất đi từ cầu Lạc Quần đến cầu Đò Quan, cùng một lúc xe máy thứ hai đi từ cầu Đò Quan về cầu Lạc Quần, sau 25 phút hai xe gặp nhau. Mỗi giờ xe thứ hai đi chậm hơn xe thứ nhất 10 km. Vận tốc xe thứ nhất là: A. 35km/h B. 30km/h C. 25km/h D. 40km/h. + Cho tam giác ABC vuông cân ở A, đường cao AH. Vẽ đường tròn tâm O đường kính BH cắt AB tại M. Biết AB cm 2 3. Tính diện tích của hình được giới hạn bởi tam giác ABC và hình tròn (O) đường kính BH (phần tô đậm trong hình bên, kết quả làm tròn đến chữ số thập phân thứ nhất). + Cho tam giác nhọn ABC AB AC các đường cao AD, BE, CF cắt nhau tại H. Vẽ đường tròn (O) đường kính HC. Trên cung EC nhỏ của đường tròn (O), lấy điểm I sao cho IC IE DI cắt CE tại N. a) Chứng minh tứ giác AFHE nội tiếp và AEF DIC. b) Gọi M là giao điểm của FE và CI, đường thẳng HM cắt (O) tại điểm thứ hai là K, KN cắt (O) tại điểm thứ hai là G, MN cắt BC tại T. Chứng minh MN // AB và ba điểm H, T, G thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra Toán 9 thi vào 10 năm 2024 - 2025 đợt 2 phòng GDĐT Ứng Hòa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra rà soát chất lượng học sinh môn Toán 9 chuẩn bị thi vào lớp 10 năm học 2024 – 2025 đợt 2 phòng Giáo dục và Đào tạo huyện Ứng Hòa, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề kiểm tra Toán 9 thi vào 10 năm 2024 – 2025 đợt 2 phòng GD&ĐT Ứng Hòa – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một ca nô xuôi dòng trên một khúc sông dài 90 km rồi ngược dòng về 63 km. Biết thời gian xuôi dòng ít hơn thời gian ngược dòng là 1 giờ và vận tốc khi xuôi dòng hơn vận tốc ngược dòng là 6km/h. Tính vận tốc ca nô lúc xuôi dòng và lúc ngược dòng. + Một hình nón có bán kính đáy bằng 5 cm và diện tích xung quanh là 65pi cm2. Tính thể tích của khối nón đó (làm tròn kết quả đến chữ số thập phân thứ hai). + Trong hệ tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = 2mx + 3. a. Tìm các điểm nằm trên parabol (P) có tung độ bằng 4. b. Tìm m để (d) cắt (P) tại hai điểm phân biệt A và B sao cho SAOB = 6 (đvdt).
Đề minh họa tuyển sinh lớp 10 môn Toán năm 2024 - 2025 sở GDĐT Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề minh họa kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2024 – 2025 sở Giáo dục và Đào tạo thành phố Hà Nội; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn Đề minh họa tuyển sinh lớp 10 môn Toán năm 2024 – 2025 sở GD&ĐT Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một người lái xe máy để giao một gói hàng từ địa điểm A đến địa điểm B với vận tốc không đổi trên quảng đường dài 30km. Khi giao hàng xong, người đó đi từ B trở về A trên cùng quãng đường với vận tốc lớn hơn vận tốc lúc đi là 10km/h. Biết thời gian đi nhiều hơn thời gian về là 15 phút, tính vận tốc của người đó lúc đi từ A đến B. + Một chiếc nón lá có dạng hình nón với đường kính đáy bằng 44cm, độ dài đường sinh là 30cm. Người ta lát mặt ngoài xung quanh hình nón bằng 3 lớp lá khô. Tính diện tích lá cần dùng để tạo nên một chiếc nón lá như vậy. + Cho tam giác ABC (AB > AC) nội tiếp đường tròn (O). Gọi M là trung điểm của BC. Gọi E, F lần lượt là chân đường vuông góc kẻ từ M đến các đường thẳng AB, AC. 1) Chứng minh bốn điểm A, E, M, F cùng thuộc một đường tròn. 2) Đường thẳng AM cắt đường tròn (O) tại điểm thứ hai là K. Chứng minh KBC = MEF và BC.ME = EF.BK. 3) Gọi J là trung điểm của EF. Chứng minh AO song song với JM.
30 đề minh họa Toán (chung) vào lớp 10 năm 2024 - 2025 sở GDĐT Bà Rịa - Vũng Tàu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 tài liệu tuyển tập 30 đề minh họa tuyển sinh vào lớp 10 THPT môn Toán (chung) năm học 2024 – 2025 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; các đề thi được biên soạn theo hình thức tự luận, thời gian làm bài 120 phút, có đáp án và hướng dẫn chấm điểm.
Đề khảo sát Toán (chuyên) vào 10 năm 2024 - 2025 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán (dành cho thí sinh thi vào chuyên Toán và chuyên Tin học) tuyển sinh vào lớp 10 năm học 2024 – 2025 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 07 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán (chuyên) vào 10 năm 2024 – 2025 trường chuyên Lam Sơn – Thanh Hóa : + Cho n là số nguyên dương và d là ước dương của 2 2 n chứng minh 2 n d không phải là số chính phương. + Tam giác nhọn không cân ABC nội tiếp đường tròn O đường cao AH H BC. Gọi K L lần lượt là hình chiếu vuông góc của điểm H trên các cạnh AB AC. Đường thẳng KL cắt đường tròn O tại hai điểm P Q (P và B cùng phía đối với AC). a) Chứng minh tứ giác BKLC nội tiếp đường tròn. b) Chứng minh BC là tiếp tuyến của đường tròn ngoại tiếp tam giác PHQ. c) AH cắt lại đường tròn O tại TT A. Gọi D là hình chiếu vuông góc của H lên KL AD cắt đường tròn O tại MM A. Chứng minh 0 HMT 90. + Chứng minh rằng từ 6 số vô tỉ tùy ý ta có thể chọn được 3 số abc sao cho cả 3 số a bb cc a đều là số vô tỉ. Bài toán còn đúng không nếu ban đầu là 4 số?