Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tổng hợp kiến thức môn Toán lớp 9 phần Đại số

Tài liệu gồm 32 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán Tiểu Học – THCS – THPT Việt Nam, tổng hợp kiến thức môn Toán lớp 9 phần Đại số, giúp học sinh lớp 9 tra cứu nhanh khi học chương trình Đại số 9 và ôn thi vào lớp 10 môn Toán. 1 CĂN BẬC HAI – CĂN BẬC BA. 1. Căn bậc hai – Căn bậc ba. 2. Điều kiện để biểu thức xác định (có nghĩa). 3. Liên hệ phép khai phương – phép nhân – phép chia. 4. Đưa thừa số vào trong – ra ngoài căn. 5. Trục căn thức ở mẫu. 6. Giải phương trình. 7. Các dạng toán hay gặp. 8. So sánh căn bậc hai. 9. Tính giá trị của biểu thức. 10. So sánh biểu thức có chứa biến. 11. Tìm giá trị của x thỏa mãn đẳng thức (sau rút gọn). 12. Tìm giá trị của x thỏa mãn bất phương trình (sau rút gọn). 13. Tìm x nguyên, tìm x thuộc N, tìm số nguyên lớn nhất, số nguyên nhỏ nhất để giá trị của biểu thức A nguyên. 14. Tìm giá trị của x, tìm x thuộc Q; x thuộc R để giá trị biểu thức A nguyên. 15. Tìm giá trị của tham số m để A(x) = m có nghiệm. 16. Tìm giá trị của tham số m để P > f(m) hoặc P < f(m) có nghiệm, vô nghiệm. 17. Tìm giá trị lớn nhất – giá trị nhỏ nhất của biểu thức sau rút gọn. 2 HÀM SỐ BẬC NHẤT – BẬC HAI. 1. Tìm điều kiện để hàm số là hàm số bậc nhất. 2. Hàm số đồng biến – nghịch biến. 3. Hệ số góc của đường thẳng. 4. Vẽ đồ thị hàm số bậc nhất. 5. Tính diện tích các hình – độ dài các đoạn thẳng trên hệ trục. 6. Tìm giao tuyến của hai đồ thị y = f(x) và y = g(x). 7. Vẽ đồ thị hàm số y = |f(x)|. 8. Biện luận số nghiệm của phương trình f(x) = f(m) dựa vào đồ thị. 9. Vị trí tương đối giữa hai đường thẳng. 10. Hai đường thẳng cắt nhau thỏa mãn điều kiện k. 11. Lập phương trình đường thẳng. 12. Tìm điểm cố định của y = f(x;m); chứng minh đồ thị luôn đi qua điểm cố định (hoặc tìm điểm mà đồ thị luôn đi qua). 13. Ba điểm thẳng hàng – không thẳng hàng (Ba điểm là ba đỉnh tam giác). 14. Tìm điều kiện tham số để ba đường thẳng đồng quy. 15. Khoảng cách từ gốc tọa độ đến đường thẳng. 3 ĐỒ THỊ HÀM SỐ 1. Tính chất. 2. Điểm thuộc đồ thị. 3. Vị trí tương đối của đường thẳng y = f(x) = mx + n và Parabol y = g(x) = ax2. 4 GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH HOẶC HỆ PHƯƠNG TRÌNH. 1. Phương pháp chung. 2. Dạng toán cấu tạo số. 3. Dạng toán làm chung – làm riêng – vòi nước. 4. Dạng toán chuyển động. 5. Dạng toán có nội dung hình học. 6. Dạng toán năng suất – phần trăm. 7. Dạng toán có nội dung lí hóa. 5 HỆ PHƯƠNG TRÌNH. 1. Kiểm tra (x0;y0) có phải là nghiệm của phương trình ax + by = 0 không? 2. Tìm nghiệm tổng quát của phương trình ax + by = 0. 3. Tìm nghiệm nguyên, nguyên dương, nguyên âm của ax + by = 0. 4. Dự đoán số nghiệm của hệ phương trình. 5. Giải hệ phương trình bằng phương pháp thế. 6. Giải hệ phương trình bằng phương pháp cộng. 7. Giải hệ phương trình bằng phương pháp đặt ẩn phụ. 8. Hệ phương trình chứa dấu giá trị tuyệt đối. 9.Tìm hệ số a; b biết hệ a1x + b1y = c1 và a2x + b2y = c2 có nghiệm là x0;y0. 10. Hệ phương trình tương đương. 11. Giải và biện luận hệ phương trình. 12. Tìm m để hệ có nghiệm duy nhất thỏa mãn điều kiện K. 13. Tìm hệ thức độc lập giữa x, y không phụ thuộc vào m (tìm quỹ tích điểm M(x;y) hoặc chứng minh M(x;y) nằm trên đường thẳng cố định). 6 HỆ PHƯƠNG TRÌNH ĐỐI XỨNG LOẠI I. 7 HỆ PHƯƠNG TRÌNH ĐỐI XỨNG LOẠI II. 8 HỆ ĐẲNG CẤP BẬC HAI. 9 PHƯƠNG TRÌNH BẬC HAI ax2 + bx + c = 0. 1. Giải phương trình ax2 + bx + c = 0. 2. Tìm hai số biết tổng và tích. 3. Định lý Vi-Ét. 4. Mối liên hệ giữa hai nghiệm x1; x2. 5. Giải và biện luận ax2 + bx + c = 0. 6. Chứng minh phương trình luôn có nghiệm – vô nghiệm. 7. Phương trình có hai nghiệm phân biệt – Phương trình có nghiệm kép. 8. Lập phương trình bậc hai khi biết nghiệm. 9. Tìm m để phương trình có nghiệm x0. 10. Phương trình có hai nghiệm dương phân biệt (nằm bên phải Oy). 11. Phương trình có hai nghiệm âm phân biệt (nằm bên trái trục tung). 12. Phương trình có hai nghiệm trái dấu + cùng dấu (nằm về hai phía hoặc cùng phía với Oy). 13. Tìm m để phương trình có ít nhất một nghiệm dương. 14. Phương trình có một nghiệm dương. 15. Tìm m để phương trình có ít nhất một nghiệm âm. 16. Phương trình có một nghiệm âm. 17. Tìm m để phương trình có một nghiệm. 18. Phương trình có hai nghiệm đối nhau. 19. Phương trình có hai nghiệm là nghịch đảo nhau. 20. Chứng minh có ít nhất một phương trình có nghiệm. 21. Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện. 22. Hệ thức giữa x1; x2 không phụ thuộc m. 23. Tìm giá trị lớn nhất – nhỏ nhất của biểu thức chứa x1; x2. 24. Phương trình có hai nghiệm phân biệt nguyên. 25. Tìm m để phương trình a1x2 + b1x + c1 = 0 và a2x2 + b2x + c2 = 0 có nghiệm chung. 26. So sánh một số với nghiệm của phương trình ax2 + bx + c = 0. 10 PHƯƠNG TRÌNH BẬC BA y = ax3 + bx2 + cx + d = 0. 1. Phương trình có 3 nghiệm phân biệt. 2. Phương trình có hai nghiệm phân biệt. 3. Phương trình có một nghiệm. 11 PHƯƠNG TRÌNH BẬC BỐN y = ax4 + bx2 + c. 1. Cách giải ax4 + bx2 + c = 0. 2. Phương trình có 4 nghiệm. 3. Phương trình có 3 nghiệm. 4. Phương trình có hai nghiệm. 5. Phương trình có 1 nghiệm. 6. Phương trình vô nghiệm. 7. Phương trình (x + a)(x + b)(x + c)(x + d) = m với a + b = c + d. 8. Phương trình hồi quy ax4 + bx3 + cx2 + dx + e = 0 và ad2 = eb2. 9. Phương trình dạng (x + a)4 + (x + b)4 = c. 10. Phương trình dạng (x + a)(x + b)(x + c)(x + d) = rx2 với ab = cd. 11. Phương trình ax4 + bx3 + cx2 + bx + a = 0.

Nguồn: toanmath.com

Đọc Sách

Tài liệu tự học Toán 9 - Nguyễn Chín Em (Tập 2)
Tài liệu gồm 285 trang được biên soạn bởi thầy Nguyễn Chín Em, tuyển tập lý thuyết, dạng toán, phương pháp giải và bài tập các chủ đề Toán 9 giai đoạn học kỳ 2. Khái quát nội dung tài liệu tự học Toán 9 – Nguyễn Chín Em (Tập 2): PHẦN I . ĐẠI SỐ. CHƯƠNG 3 . HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN. 1 Phương trình bậc nhất hai ẩn số. 2 Hệ hai phương trình bậc nhất hai ẩn. 3 Giải hệ phương trình bằng phương pháp thế. + Dạng 1. Giải hệ phương trình. + Dạng 2. Sử dụng hệ phương trình giải toán. 4 Giải hệ phương trình bằng phương pháp cộng. + Dạng 1. Giải hệ phương trình. + Dạng 2. Sử dụng hệ phương trình giải toán. 5 Giải bài toán bằng cách lập hệ phương trình. + Dạng 1. Bài toán chuyển động. + Dạng 2. Bài toán vòi nước. 6 Phương trình quy về phương trình bậc hai. + Dạng 1. Giải phương trình tích. + Dạng 2. Sử dụng ẩn phụ chuyển phương trình về phương trình bậc hai. + Dạng 3. Giải phương trình chứa ẩn ở mẫu. + Dạng 4. Giải phương trình bậc ba. + Dạng 5. Giải phương trình trùng phương. + Dạng 6. Giải phương trình hồi quy và phản hồi quy. + Dạng 7. Phương trình dạng (x + a)(x + b)(x + c)(x + d) = m với a + b = c + d. + Dạng 8. Phương trình dạng (x + a)^4 + (x + b)^4 = c. + Dạng 9. Sử dụng phương trình bậc hai giải phương trình chứa dấu giá trị tuyệt đối. + Dạng 10. Sử dụng phương trình bậc hai giải phương trình chứa căn thức. 7 Giải bài toán bằng cách lập phương trình. + Dạng 1. Bài toán chuyển động. + Dạng 2. Bài toán về số và chữ số. + Dạng 3. Bài toán vòi nước. + Dạng 4. Bài toán có nội dung hình học. + Dạng 5. Bài toán về phần trăm – năng suất. PHẦN II . HÌNH HỌC. CHƯƠNG 3 . GÓC VỚI ĐƯỜNG TRÒN. 1 Góc ở tâm – Số đo cung. 2 Liên hệ giữa cung và dây. 3 Góc nội tiếp. + Dạng 1. Giải bài toán định lượng. + Dạng 2. Giải bài toán định tính. 4 Góc tạo bởi tiếp tuyến và dây cung. + Dạng 1. Giải bài toán định tính. + Dạng 2. Giải bài toán định lượng. 5 Góc có đỉnh ở bên trong đường tròn, góc có đỉnh ở bên ngoài đường tròn. 6 Cung chứa góc. + Dạng 1. Tìm quỹ tích các điểm M tạo thành với hai mút của đoạn thẳng AB cho trước một góc AMB có số đo không đổi bằng α (0◦ < α < 180◦). + Dạng 2. Dựng cung chứa góc α (0◦ < α < 180◦) trên đoạn thẳng AB = a cho trước. + Dạng 3. Sử dụng quỹ tích cung chứa góc chứng minh nhiều điểm cùng nằm trên một đường tròn. + Dạng 4. Toán tổng hợp. 7 Tứ giác nội tiếp. + Dạng 1. Chứng minh tứ giác nội tiếp đường tròn. + Dạng 2. Sử dụng tứ giác nội tiếp giải các bài toán hình học. 8 Đường tròn ngoại tiếp – Đường tròn nội tiếp. 9 Độ dài đường tròn, cung tròn. 10 Diện tích hình tròn, hình quạt tròn. 11 Ôn tập chương III. CHƯƠNG 4 . HÌNH CẦU, HÌNH TRỤ, HÌNH NÓN. 1 Hình trụ. Diện tích xung quanh và thể tích hình trụ. 2 Hình nón – Hình nón cụt – Diện tích xung quanh và thể tích của hình nón, hình nón cụt. 3 Hình cầu – Diện tích mặt cầu và thể tích hình cầu. 4 Ôn tập chương IV.
Lý thuyết và bài tập chuyên đề hàm số
Tài liệu gồm 55 trang trình bày lý thuyết trọng tâm và hướng dẫn giải các bài toán liên quan đến hàm số và đồ thị hàm số y = ax, y = ax + b, y = ax^2 trong chương trình Toán 9, tài liệu phù hợp để ôn luyện nâng cao Toán 9, bồi dưỡng học sinh giỏi Toán 9 và luyện thi vào lớp 10 môn Toán. Khái quát nội dung tài liệu lý thuyết và bài tập chuyên đề hàm số: CHỦ ĐỀ 1 : HÀM SỐ BẬC NHẤT + Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho vói mỗi giá trị của x ta luôn xác định được chỉ một giá trị số tương ứng của y thì y được gọi là hàm số của x. + Đồ thị của hàm số y = f(x) là tập hợp tất cả các điểm biểu diễn các cặp giá trị tương ứng (x;f(x)) trên mặt phẳng tọa độ. + Khi x thay đổi mà y luôn nhận một giá trị không đổi thì y được gọi là hàm hằng. + Hàm số đồng biến và hàm số nghịch biến. CHỦ ĐỀ 2 : HÀM SỐ Y = AX + Hàm số y = ax (a khác 0) xác định với mọi số thực a. + Đồ thị của hàm số y = ax là một đường thẳng đi qua gốc toạ độ. + Trên tập hợp số thực, hàm số y = ax đồng biến khi a > 0, nghịch biến khi a < 0. [ads] CHỦ ĐỀ 3 : HÀM SỐ BẬC NHẤT Y = AX + B + Hàm số bậc nhất là hàm số được cho bởi công thức y = ax + b, trong đó a và b là các số thực xác định và a khác 0. + Hàm số y = ax + b (a khác 0) xác định với mọi số thực . + Trên tập hợp số thực, hàm số y = ax + b đồng biến khi a > 0, nghịch biến khi a < 0. + Đồ thị của hàm số bậc nhất là một đường thẳng cắt cả hai trục toạ độ. + Hàm số y = ax là trường hợp đặc biệt của hàm số y = ax + b khi b = 0. CHỦ ĐỀ 4 : HÀM SỐ Y = AX^2 + Hàm số y = ax^2 (a khác 0) xác định với mọi x thuộc R. + Nếu a > 0 thì hàm số nghịch biến với x < 0, đồng biến với x > 0, bằng 0 với x = 0. Nếu a < 0 thì hàm số đồng biến với x < 0, nghịch biến với x > 0, bằng 0 với x = 0. + Đồ thị của hàm số là một parabol đi qua gốc toạ độ và nhận trục tung làm trục đối xứng.
Chuyên đề rút gọn biểu thức chứa căn và bài toán liên quan
Tài liệu gồm 91 trang được sưu tầm và tổng hợp bởi tác giả Trịnh Bình, phân dạng và hướng dẫn giải các dạng toán chủ đề rút gọn biểu thức chứa căn và các bài toán liên quan, đây là dạng toán được bắt gặp thường xuyên trong chương trình Toán 9 và trong đề thi tuyển sinh vào lớp 10 môn Toán. Khái quát nội dung tài liệu chuyên đề rút gọn biểu thức chứa căn và bài toán liên quan: Vấn đề 1 . Các công thức biến đổi căn thức. Vấn đề 2 . Cách tìm điều kiện trong bài toán chứa căn thức. Vấn đề 3 . Các dạng toán biến đổi căn thức thường gặp. Vấn đề 4 . Dùng ẩn phụ để đơn giải hóa bài toán. Vấn đề 5 . Các bài toán về tính tổng dãy có quy luật. Vấn đề 6 . Rút gọn biểu thức chưa một hay nhiều ẩn. [ads] Vấn đề 7 . Rút gọn biểu thức và bài toán liên quan. + Dạng toán 1: Tính giá trị biểu thức khi x = k (với k là hằng số). + Dạng toán 2: Tính giá trị biến x để P = k (với k là hằng số). + Dạng toán 3: Tính giá trị biến x để P = A (với A là biểu thức chứa ẩn). + Dạng toán 4: Tìm giá trị của biến x để biểu thức P đã cho thỏa mãn bất đẳng thức P < k (>, ≥, ≤) với k là hằng số. + Dạng toán 5: So sánh biểu thức đã cho với k (hằng số) hoặc B (biểu thức chứa ẩn). + Dạng toán 6: So sánh biểu thức rút gọn A với √A hoặc A^2. + Dạng toán 7: Chứng minh với mọi giá trị của ẩn x để biểu thức A đã cho xác định thì A > k (<, ≥, ≤) với k là hằng số. + Dạng toán 8: Tìm giá trị của biến x để biểu thức P đã cho thỏa mãn bất đẳng thức P < A (>, ≥, ≤) với A là biểu thức chứa ẩn. + Dạng toán 9: Tìm giá trị của ẩn để biểu thức đã cho nhận giá trị nguyên. + Dạng toán 10: Tìm giá trị của ẩn để biểu thức đạt GTNN hoặc GTLN. + Dạng toán 11: Chứng minh biểu thức đã cho luôn âm hoặc luôn dương. + Dạng toán 12: Tìm giá trị của ẩn thỏa mãn phương trình, bất phương trình chứa dấu giá trị tuyệt đối. + Dạng toán 13: Tìm giá trị tham số m để x thỏa mãn phương trình, bất phương trình. Bài tập luyện tập và hướng dẫn giải bài tập.
Tài liệu tự học Toán 9 - Nguyễn Chín Em (Tập 1)
Tài liệu gồm 208 trang được biên soạn bởi thầy Nguyễn Chín Em, tuyển tập lý thuyết, dạng toán, phương pháp giải và bài tập các chủ đề Toán 9 giai đoạn học kỳ 1. Khái quát nội dung tài liệu tự học Toán 9 – Nguyễn Chín Em (Tập 1): PHẦN I . ĐẠI SỐ Chương 1 . Căn bậc hai, căn bậc ba. 1. Căn bậc hai. A. Tóm tắt lý thuyết. 1. Căn bậc hai của một số. 2. So sánh các căn bậc hai số học. B. Phương pháp giải toán. 2. Căn thức bậc hai và hằng đẳng thức √A^2 = |A|. A. Tóm tắt lí thuyết. B. Các dạng toán. 1. Phá dấu trị tuyệt đối. 2. Điều kiện để √A có nghĩa. 3. Sử dụng hằng đẳng thức √A^2 = |A|. 4. Phương trình – bất phương trình. C. Bài tập tự luyện. 3. Liên hệ giữa phép nhân và phép khai phương. A. Tóm tắt lí thuyết. 1. Định lí. 2. Khai phương một tích. 3. Nhân các căn thức bậc hai. B. Các dạng toán. C. Bài tập tự luyện. 4. Liên hệ giữa phép chia và phép khai phương. A. Tóm tắt lí thuyết. B. Dạng toán. 1. Khai phương một thương. 2. Chia hai căn thức bậc hai. C. Phương pháp giải toán. D. Bài tập tự luyện. 5. Biến đổi đơn giản biểu thức chứa căn thức bậc hai. A. Tóm tắt lí thuyết. 1. Đưa một thừa số ra ngoài dấu căn. 2. Đưa một thừa số vào trong dấu căn. 3. Khử mẫu của biểu thức lấy dấu căn. 4. Trục căn thức ở mẫu. B. Các dạng toán. 1. Đưa một thừa số vào trong hoặc ra ngoài dấu căn. 2. Khử mẫu của biểu thức dưới dấu căn – phép nhân liên hợp. 3. Sử dụng các phép biến đổi căn thức bậc hai cho bài toán rút gọn và chứng minh đẳng thức. 4. Sử dụng các phép biến đổi căn thức bậc hai giải phương trình. C. Bài tập tự luyện. 6. Rút gọn biểu thức có chứa căn bậc hai. A. Tóm tắt lí thuyết. B. Các dạng toán. 1. Thực hiện phép tính rút gọn biểu thức có chứa căn bậc hai. 2. Giải phương trình. C. Bài tập tự luyện. 7. Căn bậc ba – căn bậc n. A. Tóm tắt lí thuyết. 1. Căn bậc ba. B. Phương pháp giải toán. 1. Thực hiện các phép tính với căn bậc 3 và bậc n. 2. Khử mẫu chứa căn bậc ba. 3. Giải phương trình chứa căn bậc ba. C. Bài tập tự luyện. Chương 2 . Hàm số bậc nhất. 1. Nhắc lại và bổ sung khái niệm về hàm số. A. Tóm tắt lí thuyết. 1. Khái niệm hàm số và đồ thị. 2. Tập xác định của hàm số. 3. Hàm số đồng biến, nghịch biến. B. Các dạng toán. 1. Sự xác định của một hàm số. 2. Tìm tập xác định của hàm số. 3. Xét tính chất biến thiên của hàm số. C. Bài tập tự luyện. 2. Hàm số bậc nhất. A. Tóm tắt lý thuyết. 1. Định nghĩa. B. Phương pháp giải toán. C. Bài tập luyện tập. 3. Đồ thị của hàm số bậc nhất. A. Tóm tắt lý thuyết. 1. Đồ thị của hàm số y = ax với a khác 0. 2. Đồ thị của hàm số y = ax + b với a khác 0. 3. Cách vẽ đồ thị hàm số bậc nhất. B. Phương pháp giải toán. C. Bài tập luyện tập. 4. Đường thẳng song song và đường thẳng cắt nhau. A. Tóm tắt lí thuyết. B. Phương pháp giải toán. C. Bài tập luyện tập. 5. Hệ số góc của đường thẳng. A. Tóm tắt lí thuyết. B. Phương pháp giải toán. 1. Hệ số góc của đường thẳng. 2. Lập phương trình đường thẳng biết hệ số góc. C. Bài tập tự luyện. [ads] PHẦN II . HÌNH HỌC Chương 1 . Hệ thức lượng trong tam giác vuông. 1. Một số hệ thức về cạnh và đường cao của tam giác vuông. A. Tóm tắt lí thuyết. 1. Hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền. 2. Một số hệ thức liên quan tới đường cao. B. Phương pháp giải toán. 1. Giải các bài toán định lượng. 2. Giải các bài toán định tính. C. Bài tập tự luyện. 2. Tỉ số lượng giác. A. Tóm tắt lí thuyết. 1. Tỉ số lượng giác. 2. Giá trị lượng giác của các cung đặc biệt. 3. Hàm số lượng giác của hai góc phụ nhau. B. Phương pháp giải toán. 1. Giải các bài toán định lượng. 2. Giải các bài toán định tính. C. Bài tập tự luyện. Chương 2 . Đường tròn. 1. Sự xác định đường tròn – tính chất đối xứng của đường tròn. A. Tóm tắt lí thuyết. 1. Nhắc lại về đường tròn. 2. Cách xác định đường tròn. 3. Tâm đối xứng – trục đối xứng. B. Các dạng toán. 1. Chứng minh nhiều điểm cùng nằm trên một đường tròn. 2. Quỹ tích điểm là một đường tròn. 3. Dựng đường tròn. C. Bài tập tự luyện. 2. Đường kính và dây cung của đường tròn. A. Tóm tắt lí thuyết. 1. So sánh độ dài của đường kính và dây. 2. Quan hệ vuông góc giữa đường kính và dây. B. Phương pháp giải toán. 1. Giải bài toán định tính và định lượng. 2. Giải bài toán dựng hình. 3. Giải bài toán quỹ tích. C. Bài tập rèn luyện. 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây. A. Tóm tắt lí thuyết. B. Phương pháp giải toán. C. Bài tập luyện tập. 4. Vị trí tương đối của đường thẳng và đường tròn. A. Tóm tắt lý thuyết. B. Phương pháp giải toán. C. Bài tập luyện tập. 5. Tiếp tuyến của đường tròn. A. Tóm tắt lý thuyết. 1. Các tính chất của tiếp tuyến. B. Phương pháp giải toán. 1. Dựng tiếp tuyến của đường tròn. 2. Giải bài toán định tính và định lượng. 3. Chứng minh một đường thẳng là tiếp tuyến của đường tròn. 4. Sử dụng tính chất tiếp tuyến để tìm quỹ tích. C. Bài tập tự luyện. 6. Tính chất của hai tiếp tuyến cắt nhau. A. Tóm tắt lý thuyết. 1. Đường tròn nội tiếp tam giác. 2. Đường tròn bàng tiếp tam giác. B. Phương pháp giải toán. C. Bài tập luyện tập. D. Hướng dẫn – đáp số. 7. Vị trí tương đối của hai đường tròn. A. Tóm tắt lý thuyết. 1. Hai đường tròn có hai điểm chung. 2. Hai đường tròn chỉ có một điểm chung. 3. Hai đường tròn không có điểm chung. 4. Một số tính chất. B. Phương pháp giải toán. C. Bài tập luyện tập.