Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 8 môn Toán năm 2020 2021 phòng GD ĐT thành phố Vinh Nghệ An

Nội dung Đề thi HSG lớp 8 môn Toán năm 2020 2021 phòng GD ĐT thành phố Vinh Nghệ An Bản PDF - Nội dung bài viết Đề thi HSG lớp 8 môn Toán năm 2020-2021 phòng GD&ĐT thành phố Vinh Nghệ An Đề thi HSG lớp 8 môn Toán năm 2020-2021 phòng GD&ĐT thành phố Vinh Nghệ An Ngày ... tháng 04 năm 2021, Phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An đã tổ chức kỳ thi khảo sát chất lượng học sinh giỏi môn Toán lớp 8 năm học 2020-2021. Đề thi HSG Toán lớp 8 năm 2020-2021 của phòng GD&ĐT thành phố Vinh - Nghệ An bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút. Dưới đây là một số câu hỏi trích dẫn từ đề thi HSG Toán lớp 8 năm 2020-2021 của phòng GD&ĐT thành phố Vinh - Nghệ An: + Chứng minh rằng: 11^100 - 1 chia hết cho 1000. + Cho đa thức f(x) chia cho đa thức x - 2 dư 7, chia cho đa thức x^2 + 1 dư 3x + 5. Hỏi dư trong phép chia đa thức f(x) cho đa thức (x^2 + 1)(x - 2) là bao nhiêu? + Trong tam giác ABC vuông tại A (AB < AC), đường cao AH (H thuộc BC). Điểm D trên tia HC sao cho HD = HA. Đường vuông góc với BC tại D cắt AC ở E. a. Chứng minh rằng tam giác BEC đồng dạng với tam giác ADC. b. Gọi M là trung điểm của BE. Chứng minh rằng BM.BE = BC.BH. Tính số đo góc AHM. c. Tia AM cắt BC tại G. Chứng minh rằng GB.AH + GB.HC = BC.HD. Đây là một số ví dụ về những câu hỏi thú vị và đầy thách thức trong đề thi HSG Toán lớp 8 năm 2020-2021 của phòng GD&ĐT thành phố Vinh - Nghệ An. Chắc chắn rằng các em học sinh đã cần phải chuẩn bị kỹ lưỡng và tự tin để đối mặt với những bài toán này. Chúc các em thành công trong kỳ thi của mình!

Nguồn: sytu.vn

Đọc Sách

Đề Olympic lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Ứng Hòa Hà Nội
Nội dung Đề Olympic lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Ứng Hòa Hà Nội Bản PDF - Nội dung bài viết Đề thi Olympic Toán lớp 8 năm 2021 - 2022 phòng GD&ĐT Ứng Hòa Hà Nội Đề thi Olympic Toán lớp 8 năm 2021 - 2022 phòng GD&ĐT Ứng Hòa Hà Nội Chào mừng các thầy cô giáo và các em học sinh lớp 8! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi Olympic môn Toán lớp 8 năm học 2021 - 2022 của phòng Giáo dục và Đào tạo huyện Ứng Hòa, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày thứ Năm, 14 tháng 04 năm 2022. Đề thi có đề bài đa dạng và thú vị, hãy thử sức và cùng nhau giải quyết nhé! Dưới đây là một số câu hỏi mẫu trong đề thi: Đề bài: Một chiếc thuyền khởi hành từ bến sông A, sau đó 5 giờ 20 phút một chiếc ca nô cũng chạy từ bến sông A đuổi theo và gặp thuyền tại một điểm cách A 20km. Tính vận tốc của thuyền? Biết rằng ca nô chạy nhanh hơn thuyền 12km/h. Đề bài: Cho tam giác ABC nhọn, các đường cao AA', BB', CC', H là trực tâm. 1) Chứng minh CHA' đồng dạng AHC'. 2) Tính tổng HA' HB' HC' AA' BB' CC'. 3) Gọi AI là phân giác trong của tam giác ABC; IM, IN thứ tự là phân giác của góc AIC và góc AIB. Chứng minh rằng: AN.BI.CM = BN.IC.AM. Đề bài: Tìm tất cả các tam giác vuông có số đo các cạnh là các số nguyên dương và số đo diện tích bằng số đo chu vi. Hy vọng rằng các em sẽ rèn luyện kỹ năng giải toán thông qua đề thi này và có kết quả tuyệt vời. Chúc các bạn thi tốt!
Đề học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT thành phố Bắc Ninh
Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT thành phố Bắc Ninh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 năm 2021 – 2022 phòng GD&ĐT thành phố Bắc Ninh Đề thi học sinh giỏi Toán lớp 8 năm 2021 – 2022 phòng GD&ĐT thành phố Bắc Ninh Xin chào quý thầy, cô giáo và các em học sinh lớp 8! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chọn học sinh giỏi môn Toán lớp 8 năm học 2021 – 2022 do Phòng Giáo dục và Đào tạo UBND thành phố Bắc Ninh, tỉnh Bắc Ninh tổ chức. Dưới đây là một số câu hỏi từ đề thi: 1. Cho hai số nguyên dương a và b thỏa mãn đồng thời các điều kiện: a và b là số nguyên chẵn, a^2 + b^2 = 11ab và ab chia hết cho 5. Chứng minh rằng ab chia hết cho 20. 2. Cho đa thức f(x) = x^2 + 5x + 2. Giả sử đa thức P(x) = ax^2 + b có 5 nghiệm là 1, 2, 3, 4, 5. Tìm giá trị nhỏ nhất của f(1) + f(2) + f(3) + f(4) + f(5). 3. Cho hình vuông ABCD có tâm O, lấy M trên đoạn OC sao cho M không trùng với O. Gọi S là điểm đối xứng với B qua M, đường thẳng BS cắt CD tại L. Gọi E là giao điểm của DM với BC, F là giao điểm của AE và CD, G là giao điểm của DE và BF. Chứng minh rằng: a) Hình SLDS là hình bình hành b) Đường thẳng IE song song với BD c) AE vuông góc với CG d) DLBS là hình chữ nhật. Hy vọng các em sẽ làm bài tốt và đạt kết quả cao trong đề thi học sinh giỏi Toán lớp 8. Chúc các em thành công!
Đề học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Diễn Châu Nghệ An
Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Diễn Châu Nghệ An Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 8 năm 2021 - 2022 phòng GD&ĐT Diễn Châu Đề học sinh giỏi Toán lớp 8 năm 2021 - 2022 phòng GD&ĐT Diễn Châu Chào quý thầy cô và các em học sinh lớp 8, đây là đề thi khảo sát chất lượng học sinh giỏi môn Toán lớp 8 năm học 2021 - 2022 do phòng Giáo dục và Đào tạo huyện Diễn Châu, tỉnh Nghệ An tổ chức. Bài toán đầu tiên yêu cầu chúng ta chứng minh các phát biểu sau trong tam giác vuông ABC: AH2 = BH.CH và AD.AB = AE.AC. Sau đó, điều kiện BAC = 90° được cho, và cần phải chứng minh rằng đường thẳng đi qua O và vuông góc với AF sẽ luôn đi qua 1 điểm cố định. Cuối cùng, chúng ta phải chứng minh rằng trực tâm của tam giác AMN là trung điểm của OH. Phần tiếp theo của đề bài đề cập đến việc chọn 2 số có ước chung lớn nhất khác 1 từ 29 số nguyên dương nhỏ hơn 100. Câu cuối cùng đề cương về bài toán định lý Fermat với điều kiện a3 + b3 = 5c3 + 11d3 và cần chứng minh rằng a + b + c + d chia hết cho 6. Đây là những bài toán thú vị và đòi hỏi sự tư duy logic và khả năng suy luận của các em học sinh. Chúc các em thành công trong việc giải quyết các bài toán này!
Đề học sinh giỏi huyện lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Kỳ Anh Hà Tĩnh
Nội dung Đề học sinh giỏi huyện lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Kỳ Anh Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 huyện Kỳ Anh năm 2021 - 2022 Đề thi học sinh giỏi Toán lớp 8 huyện Kỳ Anh năm 2021 - 2022 Chúng ta sẽ cùng tìm hiểu và phân tích nội dung của đề thi học sinh giỏi môn Toán lớp 8 cấp huyện năm học 2021 - 2022 do Phòng Giáo dục và Đào tạo huyện Kỳ Anh, tỉnh Hà Tĩnh ban hành. 1. Bài toán về quãng đường từ Khu kinh tế Vũng Áng đến thành phố Vinh yêu cầu học sinh phải tính vận tốc ban đầu của người đi xe máy để đến đúng thời gian dự định sau khi nghỉ giải lao. Đây là một bài toán kinh điển về vận tốc, khoa học và logic. 2. Bài toán về tam giác ABC có AM là đường trung tuyến sẽ giúp học sinh phát triển kỹ năng giải bài toán hình học. Bằng cách sử dụng kiến thức về diện tích tam giác và đường trung tuyến, học sinh sẽ có cơ hội rèn luyện tư duy logic và khả năng phân tích bài toán. 3. Bài toán về việc tổ chọn ra các đấu thủ bóng bàn để thi đấu giao hữu sẽ giúp học sinh phát triển kỹ năng tư duy toán học và tính toán. Học sinh sẽ cần tính toán số lượng đấu thủ để đáp ứng yêu cầu của bài toán, từ đó rèn luyện khả năng suy luận và xử lý tình huống. Đề thi học sinh giỏi Toán lớp 8 huyện Kỳ Anh năm 2021 - 2022 không chỉ là cơ hội để học sinh thể hiện khả năng mà còn là dịp để rèn luyện kiến thức và kỹ năng giải bài toán. Chúc các em học sinh thành công trong việc giải quyết các bài toán thú vị này!