Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Vĩnh Lộc Thanh Hóa

Nội dung Đề giao lưu HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Vĩnh Lộc Thanh Hóa Bản PDF - Nội dung bài viết Giới thiệu đề giao lưu HSG Toán lớp 8 năm 2016 - 2017 phòng GD&ĐT Vĩnh Lộc - Thanh Hóa Giới thiệu đề giao lưu HSG Toán lớp 8 năm 2016 - 2017 phòng GD&ĐT Vĩnh Lộc - Thanh Hóa Chào quý thầy cô giáo và các em học sinh lớp 8! Sytu xin giới thiệu đến các bạn đề giao lưu HSG Toán lớp 8 năm 2016 - 2017 từ phòng GD&ĐT Vĩnh Lộc - Thanh Hóa. Đề thi bao gồm câu hỏi, đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Ví dụ về câu hỏi trong đề giao lưu: 1. Cho tam giác ABC có phân giác AD. Vẽ tia Cx sao cho góc BCX bằng 1/2 góc BAC. Tia Cx cắt AD tại điểm E và trung điểm của DE là I. Hãy chứng minh rằng: a) Tam giác ABD đồng dạng với tam giác CED. b) AE2 lớn hơn AB nhân AC. c) 4AB nhân AC bằng 4 bình phương của AI trừ bình phương của DE. d) Đường trung trực của BC đi qua điểm E. Hãy cùng thử sức với các bài toán thú vị khác trong đề, như bài toán về tổng lũy thừa của a, b, c hay bài toán tìm giá trị lớn nhất của biểu thức Q = abc khi đã biết tổng nghịch đảo của a, b, c. Chắc chắn rằng đề giao lưu HSG Toán lớp 8 năm 2016 - 2017 phòng GD&ĐT Vĩnh Lộc - Thanh Hóa sẽ đem đến cho các em những trải nghiệm học tập thú vị và bổ ích!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG huyện Toán 8 năm 2014 - 2015 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi HSG huyện Toán 8 năm học 2014 – 2015 phòng GD&ĐT Kim Thành – Hải Dương; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HSG huyện Toán 8 năm 2014 – 2015 phòng GD&ĐT Kim Thành – Hải Dương : + Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N. 1. Chứng minh rằng tứ giác AEMD là hình chữ nhật. 2. Biết diện tích tam giác BCH gấp bốn lần diện tích tam giác AEH. Chứng minh rằng: AC = 2EF. 3. Chứng minh rằng. + Phân tích đa thức sau thành nhân tử. + Tìm đa thức f(x) biết rằng: f(x) chia cho x + 2 dư 10, f(x) chia cho x – 2 dư 24, f(x) chia cho x2 – 4 được thương là -5x và còn dư.
Đề thi học sinh giỏi Toán 8 năm 2014 - 2015 phòng GDĐT Ý Yên - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 8 năm 2014 – 2015 phòng GD&ĐT Ý Yên – Nam Định; đề thi có đáp án và lời giải. Trích dẫn đề thi học sinh giỏi Toán 8 năm 2014 – 2015 phòng GD&ĐT Ý Yên – Nam Định : + Cho tam giác ABC vuông tại A. Lấy một điểm M bất kỳ trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E. 1) Chứng minh EDA = EBC. 2) Chứng minh rằng khi điểm M di chuyển trên cạnh AC thì tổng BM.BD + CM.CA có giá trị không đổi. + Cho tam giác ABC. Gọi M là điểm bất kì trên cạnh AC, qua M kẻ các đường thẳng ME, MF lần lượt song song với cạnh AB, BC (E thuộc BC và F thuộc AB). Tìm vị trí của M để diện tích tứ giác BEMF có diện tích lớn nhất. + Tìm giá trị nguyên của x để biểu thức Q = 2.P nhận giá trị nguyên.
Đề thi HSG Toán 8 năm 2014 - 2015 phòng GDĐT Tam Đảo - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi HSG Toán 8 năm 2014 – 2015 phòng GD&ĐT Tam Đảo – Vĩnh Phúc; đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 8 năm 2014 – 2015 phòng GD&ĐT Tam Đảo – Vĩnh Phúc : + Cho hình vuông ABCD có AC cắt BD tại O. M là điểm bất kỳ thuộc cạnh BC (M khác B, C). Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE = CM. a) Chứng minh: ∆OEM vuông cân. b) Chứng minh: ME // BN. c) Từ C kẻ CH vuông góc BN (H thuộc BN). Chứng minh ba điểm O, M, H thẳng hàng. + Cho biểu thức: M. a) Rút gọn M. b) Tìm các giá trị nguyên của x để M đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó. + Cho ba số x, y, z khác không thỏa mãn: x + y + z = 2015 và 1/x + 1/y + 1/z = 1/2015. Chứng minh rằng trong ba số x, y, z tồn tại hai số đối nhau.
Đề thi HSG cấp huyện Toán 8 năm 2012 - 2013 phòng GDĐT Việt Yên - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi HSG cấp huyện Toán 8 năm 2012 – 2013 phòng GD&ĐT Việt Yên – Bắc Giang; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG cấp huyện Toán 8 năm 2012 – 2013 phòng GD&ĐT Việt Yên – Bắc Giang : + Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N. 1. Chứng minh rằng tứ giác AEMD là hình chữ nhật. 2. Biết diện tích tam giác BCH gấp bốn lần diện tích tam giác AEH. Chứng minh rằng: AC = 2EF. 3. Chứng minh rằng: 1/AD2 = 1/AM2 + 1/AN2. + Tìm đa thức f(x) biết rằng: f(x) chia cho x – 2 dư 10, f(x) chia cho x – 2 dư 24, f(x) chia cho x2 – 4 được thương là -5x và còn dư. + Phân tích đa thức sau thành nhân tử: x4 + 2013×2 + 2012x + 2013.