Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi tỉnh lớp 10 môn Toán năm 2021 2022 sở GD ĐT Hà Tĩnh

Nội dung Đề thi học sinh giỏi tỉnh lớp 10 môn Toán năm 2021 2022 sở GD ĐT Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi Học sinh giỏi Toán lớp 10 tỉnh Hà Tĩnh năm 2021 - 2022 Đề thi Học sinh giỏi Toán lớp 10 tỉnh Hà Tĩnh năm 2021 - 2022 Để chuẩn bị cho kỳ thi Học sinh giỏi Toán lớp 10 cấp tỉnh năm học 2021 - 2022 do Sở Giáo dục và Đào tạo tỉnh Hà Tĩnh tổ chức vào ngày 15 tháng 03 năm 2022, SYTU xin giới thiệu đến quý thầy cô và các em học sinh bộ đề thi dưới đây: 1. Cho tam giác ABC vuông tại A trong hệ tọa độ Oxy, gốc tọa độ O là trung điểm của cạnh BC. Đường phân giác trong góc B có phương trình (d): x + 2y - 5 = 0, đường thẳng AC đi qua điểm I(6;2). Hãy tìm tọa độ các đỉnh của tam giác ABC. 2. Cho tam giác ABC vuông tại A (BC = a, CA = b, AB = c), đường cao AH, I là điểm thuộc đoạn AH sao cho AI = 2IH. - a) Chứng minh rằng a^2IA + 2b^2IB + 2c^2IC = 0. - b) Biết góc ACB = 30°, tìm giá trị nhỏ nhất của biểu thức k = 2MA + 3MB + 7MC với M là điểm bất kỳ trong mặt phẳng chứa tam giác. 3. Cho hàm số f(x) = (x^2 + mx + 1)/(x^2 + x + 1) (m là tham số). Tìm m để với mọi a, b, c thì f(a), f(b), f(c) là độ dài ba cạnh của một tam giác. Đề thi Học sinh giỏi Toán lớp 10 tỉnh Hà Tĩnh năm 2021 - 2022 là cơ hội để các em thể hiện tài năng, kiến thức và kỹ năng giải quyết vấn đề. Chúc các em học sinh đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Lưu Hoàng - Hà Nội
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Lưu Hoàng – Hà Nội gồm 01 trang với 05 câu tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Lưu Hoàng – Hà Nội : + Cho parabol 2 P y x bx c (b c là các tham số thực). a) Tìm giá trị của b c biết parabol P đi qua điểm M(3;2)  và có trục đối xứng là đường thẳng x 1. b) Với giá trị của b c tìm được ở câu a, tìm m để đường thẳng d y x m cắt parabol P tại hai điểm phân biệt AB sao cho tam giác OAB vuông tại O (với O là gốc tọa độ). + Trong mặt phẳng tọa độ Oxy, cho hai điểm A và B. Tìm tọa độ điểm C sao cho tam giác ABC vuông cân tại A. + Cho ba số thực x y z thỏa mãn x y z 1 1 1 và 1 1 1 2 x y z. Tìm giá trị lớn nhất của biểu thức A x y z 1 1 1.
Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Đan Phượng - Hà Nội
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Đan Phượng – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Đan Phượng – Hà Nội : + Cho a, b, c là các số thực thỏa mãn: a b b c c a 8. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 2 2 2 P a b c. + Viết phương trình đường thẳng đi qua B(4;5) và tạo với đường thẳng 7 8 0 x y một góc 45°. + Cho tứ giác ABCD, AC và BD cắt nhau tại O. Gọi H, K lần lượt là trực tâm của tam giác ABO và CDO. Gọi M, N lần lượt là trung điểm của AD và BC. Chứng minh rằng HK MN.
Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Diễn Châu 2 - Nghệ An
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Diễn Châu 2 – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Diễn Châu 2 – Nghệ An : + Cho tam giác ABC có trọng tâm G. Gọi E, F là các điểm thỏa mãn AE = 2AB, 5AF = 2AC. Chứng minh ba điểm G, E, F thẳng hàng. + Cho tam giác ABC có ba cạnh a, b, c (với b > c), biết nửa chu vi bằng 10, góc CAB = 60 độ. Bán kính đường tròn nội tiếp tam giác đó bằng 3. Tính độ dài đường trung tuyến ma. + Trong mặt phẳng (Oxy), cho tam giác ABC có A(3;4), trực tâm H(1;3) và tâm đường tròn ngoại tiếp tam giác ABC là I(2;0). Viết phương trình các đường thẳng AH và BC.