Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 1 Toán 11 năm học 2018 - 2019 trường chuyên Nguyễn Huệ - Hà Nội

Đề thi học kỳ 1 Toán 11 năm học 2018 – 2019 trường chuyên Nguyễn Huệ – Hà Nội mã đề 201 được biên soạn nhằm giúp giáo viên bộ môn và nhà trường nắm chính xác năng lực học tập môn Toán của học sinh khối 11, để làm cơ sở đánh giá và xếp loại, đề gồm 5 trang với 50 câu trắc nghiệm , thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày 14 tháng 12 năm 2018. Trích dẫn đề thi học kỳ 1 Toán 11 năm học 2018 – 2019 trường chuyên Nguyễn Huệ – Hà Nội : + Chọn mệnh đề sai: A. Phép tịnh tiến biến đường tròn thành đường tròn có cùng bán kính. B. Phép vị tự biến đường thẳng thành đường thẳng song song hoặc trùng với nó. C. Phép quay góc quay 90° biến đường thẳng thành đường thẳng song song hoặc trùng với nó. D. Phép quay góc quay 90° biến đường thẳng thành đường vuông góc với nó. [ads] + Chọn khẳng định sai? A. Hàm số y = tanx + sinx là hàm số tuần hoàn với chu kỳ 2pi. B. Hàm số y = cosx là hàm số tuần hoàn với chu kỳ 2pi. C. Hàm số y = cotx + tanx là hàm số tuần hoàn với chu kỳ pi. D. Hàm số y = sinx là hàm số tuần hoàn với chu kỳ pi. + Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm các cạnh AD, BC; điểm G là trọng tâm của tam giác BCD. Tìm giao điểm của đường thẳng MG và mặt phẳng (ABC). A. Giao điểm của MG và BC. B. Giao điểm của MG và AC. C. Giao điểm của MG và AN. D. Giao điểm của MG và AB.

Nguồn: toanmath.com

Đọc Sách

Phiếu khảo bài môn Toán 11 học kì 1 - Lê Văn Đoàn
Tài liệu gồm 77 trang, được biên soạn bởi thầy giáo Lê Văn Đoàn, tuyển tập phiếu khảo bài môn Toán 11 học kì 1. ĐẠI SỐ & GIẢI TÍCH 11 Phiếu 1.1. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 1. Phiếu 1.2. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 3. Phiếu 2.1. Phương trình lượng giác cơ bản 5. Phiếu 2.2. Phương trình lượng giác cơ bản 7. Phiếu 3.1. Phương trình bậc hai theo một hàm số lượng giác 9. Phiếu 3.2. Phương trình bậc hai theo một hàm số lượng giác 11. Phiếu 4.1. Phương trình bậc nhất đối với sin và cosin (cổ điển) 13. Phiếu 4.2. Phương trình bậc nhất đối với sin và cosin (cổ điển) 15. Phiếu 5.1. Phương trình lượng giác đẳng cấp 17. Phiếu 5.2. Phương trình lượng giác đẳng cấp 19. Phiếu 6.1. Phương trình lượng giác đối xứng 21. Phiếu 6.2. Phương trình lượng giác đối xứng 23. Phiếu 7.1. Quy tắc đếm cơ bản 25. Phiếu 7.2. Quy tắc đếm cơ bản 27. Phiếu 8.1. Hoán vị, tổ hợp, chỉnh hợp 29. Phiếu 8.2. Hoán vị, tổ hợp, chỉnh hợp 31. Phiếu 8.3. Hoán vị, tổ hợp, chỉnh hợp 33. Phiếu 9.1. Nhị thức Newton 35. Phiếu 9.2. Nhị thức Newton 37. Phiếu 9.3. Nhị thức Newton 39. Phiếu 10.1. Xác suất 41. Phiếu 10.2. Xác suất 43. Phiếu 10.3. Xác suất 45. Phiếu 11.1. Cấp số cộng – Cấp số nhân 47. Phiếu 11.2. Cấp số cộng – Cấp số nhân 49. Phiếu 11.2. Cấp số cộng – Cấp số nhân 51. HÌNH HỌC 11 Phiếu 1.1. Tìm giao tuyến và giao điểm 53. Phiếu 1.2. Tìm giao tuyến và giao điểm 55. Phiếu 1.3. Tìm giao tuyến và giao điểm 57. Phiếu 2.1. Tìm thiết diện 59. Phiếu 2.2. Tìm thiết diện 60. Phiếu 3.1. Chứng minh ba điểm thẳng hàng 61. Phiếu 3.2. Chứng minh ba điểm thẳng hàng 62. Phiếu 4.1. Chứng minh hai đường thẳng song song 63. Phiếu 4.2. Chứng minh hai đường thẳng song song 64. Phiếu 5.1. Tìm giao tuyến song song 65. Phiếu 5.2. Tìm giao tuyến song song 67. Phiếu 6.1. Chứng minh đường thẳng song song với mặt phẳng 69. Phiếu 6.2. Chứng minh đường thẳng song song với mặt phẳng 71. Phiếu 7.1. Chứng minh mặt phẳng song song với mặt phẳng 73. Phiếu 7.2. Chứng minh mặt phẳng song song với mặt phẳng 75.