Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 9 năm 2023 phòng GDĐT Hai Bà Trưng - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm 2023 phòng Giáo dục và Đào tạo UBND quận Hai Bà Trưng, thành phố Hà Nội; kỳ thi được diễn ra vào ngày … tháng 05 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2023 phòng GD&ĐT Hai Bà Trưng – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Sân vận động Morodok Techo ở thủ đô PhnomPenh của Campuchia có sức chứa 60.000 chỗ ngồi là nơi phục vụ cho SEA Games 32. Một đơn vị được giao nhiệm vụ in vé vào sân. Thực tế mỗi ngày đơn vị đó đã in được nhiều hơn 2000 tấm vé so với kế hoạch. Vì thế đơn vị sản xuất đã hoàn thành sớm công việc trước 1 ngày. Hỏi theo kế hoạch, mỗi ngày đơn vị đó phải in bao nhiêu tấm vé? (Giả sử số tấm vé mỗi ngày đơn vị sản xuất đó in là như nhau). + Một hình nón có bán kính đáy bằng 5cm và diện tích xung quanh là 265 cm. Tính thể tích của hình nón đó. + Cho một điểm M nằm ngoài đường tròn (O), kẻ tiếp tuyến MA tới đường tròn (O) với A là tiếp điểm. Qua điểm A kẻ đường thẳng song song với MO cắt đường tròn (O) tại điểm C khác A. Đường thẳng MC cắt đường tròn (O) tại B, K là trung điểm dây cung BC. 1) Chứng minh tứ giác OMAK là tứ giác nội tiếp. 2) Chứng minh 2 MA MB MC và tam giác ABK vuông tại A. 3) Kẻ đường kính AE của đường tròn (O). Chứng minh tam giác ACK đồng dạng với tam giác EMO.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL Toán vào lớp 10 lần 1 năm 2024 - 2025 phòng GDĐT Hoằng Hóa - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2024 – 2025 phòng Giáo dục và Đào tạo huyện Hoằng Hóa, tỉnh Thanh Hóa.
Đề KSCL Toán vào lớp 10 năm 2023 - 2024 phòng GDĐT Như Thanh - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán học sinh dự thi vào lớp 10 THPT năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Như Thanh, tỉnh Thanh Hoá; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề KSCL Toán vào lớp 10 năm 2023 – 2024 phòng GD&ĐT Như Thanh – Thanh Hoá : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = ax + (b – 1). Tìm a, b biết đường thẳng (d) đi qua điểm A(2;1) và cắt trục tung tại điểm có tung độ bằng -3. + Cho phương trình 2 2 x 6x 6m m 0 (với m là tham số). Tìm m để phương trình đã cho có hai nghiệm 1 x 2 x thỏa mãn: 33 2 12 1 1 x x 2x 12x 72 0. + Cho đường tròn (O) có hai đường kính AB và MN vuông góc với nhau. Trên tia đối của tia MA lấy điểm C (C khác M). Kẻ MH vuông góc với BC (H thuộc BC). 1. Chứng minh rằng BOMH là tứ giác nội tiếp. 2. MB cắt OH tại E. Chứng minh ME.MH = BE.HC. 3. Gọi giao điểm của đường tròn (O) và đường tròn ngoại tiếp tam giác MHC là K (K khác M). Chứng minh rằng ba điểm C, K, E thẳng hàng.
Đề KSCL Toán ôn thi vào 10 năm 2023 - 2024 phòng GDĐT Thiệu Hóa - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán ôn thi vào lớp 10 THPT năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Thiệu Hóa, tỉnh Thanh Hóa; kỳ thi được diễn ra vào thứ Bảy ngày 20 tháng 05 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề KSCL Toán ôn thi vào 10 năm 2023 – 2024 phòng GD&ĐT Thiệu Hóa – Thanh Hóa : + Cho đường thẳng (d y ax b). Tìm a b biết (d) cắt trục hoành tại điểm có hoành độ bằng 3 và (d) song song với đường thẳng y x 2 6. + Cho phương trình 2 2 x mx m 1 3 0 với m là tham số. Tìm m để phương trình đã cho có hai nghiệm phân biệt 1 x 2 x (x x 1 2) thỏa mãn 2 1 12 x x 3 13. + Cho đường tròn (O) đường kính AB cố định, trên đoạn OA lấy điểm I sao cho 2 3 AI OA. Kẻ dây MN vuông góc với AB tại I. Gọi C là điểm tùy ý thuộc cung lớn MN (C không trùng M, N, B). Nối AC cắt MN tại E. a) Chứng minh: Tứ giác IECB nội tiếp. b) Chứng minh: 2 AE AC AI IB AI và MA là tiếp tuyến đường tròn ngoại tiếp tam giác MEC. c) Hãy xác định vị trí của điểm C sao cho khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME là nhỏ nhất.
Đề KSCL Toán thi vào 10 năm 2023 - 2024 trường THPT Quảng Xương 4 - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán thi tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THPT Quảng Xương 4, tỉnh Thanh Hoá; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn đề KSCL Toán thi vào 10 năm 2023 – 2024 trường THPT Quảng Xương 4 – Thanh Hoá : + Trong hệ toạ độ Oxy cho điểm A(2;2), đường thẳng dy x 4 và parabol 2 P y ax. Tìm a để parabol 2 P y ax đi qua điểm A. Với giá trị a tìm được, hãy xác định tọa độ điểm B là giao điểm thứ hai của (d) và (P). + Cho phương trình bậc hai 2 x xm 25 0 (m là tham số) 1) Giải phương trình khi m = 3. 2) Tìm giá trị của tham số m phương trình có 2 nghiệm 1 2 x x phân biệt và thỏa mãn 2 12 1 2 xx x m x 5 3 10115. + Từ một điểm M nằm ngoài đường tròn (O;R). Vẽ hai tiếp tuyến MA MB (A B là tiếp điểm) và một cát tuyến qua M cắt đường tròn tại C D (C nằm giữa M và D). Gọi E là giao điểm của AB và OM. 1) Chứng minh tứ giác OAMB nội tiếp. 2) Chứng minh MC MD ME MO. 3) Giả sử OM R 3. Tìm diện tích lớn nhất của tứ giác MADB.