Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 12 lần 1 năm 2020 - 2021 trường Yên Định 1 - Thanh Hóa

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 lần 1 năm học 2020 – 2021 trường THPT Yên Định 1, tỉnh Thanh Hóa; đề thi mã đề 007 gồm 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề KSCL Toán 12 lần 1 năm 2020 – 2021 trường Yên Định 1 – Thanh Hóa : + Cho hàm số y = x3 – 2(m + 1)x2 + (5m + 1)x – 2m – 2 có đồ thị (Cm) với m là tham số. Tập S là tập các giá trị nguyên của m với m thuộc (-2021;2021) để (Cm) cắt trục hoành tại ba điểm phân biệt A(2;0), B, C sao cho trong hai điểm B, C có một điểm nằm trong và một điểm nằm ngoài đường tròn có phương trình x2 + y2 = 1. Tính số phần tử của S? + Một người gửi 100 triệu đồng vào một ngân hàng với lãi suất 0,4%/tháng. Biết rằng nếu không rút tiền khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo. Hỏi sau đúng 6 tháng, người đó được lĩnh số tiền (cả vốn ban đầu và lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi? A. 102.424.000 đồng. B. 102.423.000 đồng. C. 102.016.000 đồng. D. 102.017.000 đồng. + Gọi S là tập hợp các số tự nhiên có 6 chữ số được lập từ tập hợp A = {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}. Chọn ngẫu nhiên một số từ tập hợp S. Tính xác suất để chọn được số tự nhiên có tích các chữ số bằng 1400.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL 8 tuần HK1 Toán 12 năm 2023 - 2024 THPT chuyên Lê Hồng Phong - Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng 8 tuần học kì 1 môn Toán 12 ABD năm học 2023 – 2024 trường THPT chuyên Lê Hồng Phong, tỉnh Nam Định (mã đề 638).
Đề KSCL 8 tuần HK1 Toán 12 năm 2021 - 2022 trường chuyên Lê Hồng Phong - Nam Định
Đề khảo sát chất lượng 8 tuần học kỳ 1 môn Toán 12 năm học 2021 – 2022 trường THPT chuyên Lê Hồng Phong – Nam Định dành cho học sinh lớp 12 theo học các khối A – B – D, đề gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 638.
Đề KSCL giữa học kì 1 Toán 12 năm 2020 - 2021 trường THPT Thạch Bàn - Hà Nội
Ngày … tháng 11 năm 2020, trường THPT Thạch Bàn, quận Long Biên, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng giữa học kì 1 môn Toán 12 năm học 2020 – 2021. Đề KSCL giữa học kì 1 Toán 12 năm 2020 – 2021 trường THPT Thạch Bàn – Hà Nội mã đề 212 gồm 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề KSCL giữa học kì 1 Toán 12 năm 2020 – 2021 trường THPT Thạch Bàn – Hà Nội : + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc BAD = 60 độ và SA vuông góc với mặt phẳng (ABCD). Góc giữa hai mặt phẳng (SBD) và (ABCD) bằng 45 độ. Gọi M là điểm đối xứng của C qua B và N là trung điểm của SC. Mặt phẳng (MND) chia khối chóp S.ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh S có thể tích là V1, khối còn lại có thể tích là V2 (tham khảo hình vẽ bên). Tính tỉ số V2/V1. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của SB, N là điểm thuộc cạnh SC sao cho SN = 2CN, P là điểm thuộc cạnh SD sao cho SP = 3DP. Mặt phẳng (MNP) cắt SA tại Q. Biết khối chóp S.MNPQ có thể tích bằng 1, khối đa diện S.ABCD có thể tích bằng? + Cho hàm số y = f(x) liên tục trên [-3;2] và có bảng biến thiên như hình vẽ bên. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên [0;2]. Giá trị của M – m bằng?