Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 8 môn Toán cấp huyện năm 2015 2016 phòng GD ĐT Nam Trực Nam Định

Nội dung Đề thi HSG lớp 8 môn Toán cấp huyện năm 2015 2016 phòng GD ĐT Nam Trực Nam Định Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 8 cấp huyện năm 2015 - 2016 phòng GD&ĐT Nam Trực - Nam Định Đề thi HSG Toán lớp 8 cấp huyện năm 2015 - 2016 phòng GD&ĐT Nam Trực - Nam Định Sytu xin gửi đến quý thầy cô và các em học sinh lớp 8 đề thi HSG Toán lớp 8 cấp huyện năm 2015 - 2016 phòng GD&ĐT Nam Trực - Nam Định. Đề thi bao gồm lời giải và thang chấm điểm. Dưới đây là một số câu hỏi trong đề thi: Cho tam giác ABC vuông tại A. Lấy một điểm M bất kỳ trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E. Chứng minh: EA.EB = ED.EC Chứng minh rằng khi điểm M di chuyển trên cạnh AC thì tổng BM.BD + CM.CA có giá trị không đổi. Kẻ DH vuông góc BC (H thuộc BC). Gọi P, Q lần lượt là trung điểm của các đoạn thẳng BH, DH. Chứng minh CQ vuông góc PD. Cần dùng ít nhất bao nhiêu tấm bìa hình tròn có bán kính bằng 1 để phủ kín một tam giác đều có cạnh bằng 3, với giả thiết không được cắt tấm bìa. Cho hai số thực dương x, y thỏa mãn. Tìm giá trị nhỏ nhất của biểu thức Q. Đây là một số câu hỏi thú vị và thách thức trong đề thi HSG Toán lớp 8 cấp huyện năm 2015 - 2016 phòng GD&ĐT Nam Trực - Nam Định. Hy vọng rằng đề thi sẽ giúp các em học sinh rèn luyện kỹ năng giải toán và chuẩn bị tốt cho các kỳ thi sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán 8 năm 2023 - 2024 phòng GDĐT thành phố Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp thành phố môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Bắc Ninh, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 10 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi chọn HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT thành phố Bắc Ninh : + Cho tam giác ABC nhọn (AB < AC), đường cao AD, CF cắt nhau tại H. Gọi M là điểm thuộc đoạn thẳng DC sao cho BM < 2BD. Qua A vẽ đường thẳng vuông góc với AM cắt CH tại K. a. Chứng minh rằng: KAH AMB. b. Lấy G đối xứng với H qua K. Gọi P là trung điểm của BM. Chứng minh: AG AP. c. Khi BM = 2MC, gọi N là giao điểm của AG và BH. Chứng minh: AG = 2AN. + Cho hình vuông ABCD có cạnh bằng 8. Trên cạnh BC lấy điểm M sao cho BM 5. Gọi N là giao điểm của đường thẳng CD và đường thẳng vuông góc với AM tại A. Gọi I là trung điểm của MN. Hãy tính độ dài đoạn thẳng DI. + Chọn ngẫu nhiên một số tự nhiên có 4 chữ số. Tính xác suất để số được chọn là số có 4 chữ số thỏa mãn chữ số đứng sau lớn hơn chữ số đứng trước.