Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi huyện lớp 8 môn Toán năm 2018 2019 phòng GD ĐT Ninh Phước Ninh Thuận

Nội dung Đề thi học sinh giỏi huyện lớp 8 môn Toán năm 2018 2019 phòng GD ĐT Ninh Phước Ninh Thuận Bản PDF - Nội dung bài viết Đề thi học sinh giỏi huyện Toán lớp 8 năm 2018 - 2019 phòng GD&ĐT Ninh Phước - Ninh Thuận Đề thi học sinh giỏi huyện Toán lớp 8 năm 2018 - 2019 phòng GD&ĐT Ninh Phước - Ninh Thuận Chào quý thầy cô và các em học sinh lớp 8! Hôm nay, chúng ta sẽ cùng tìm hiểu về đề thi học sinh giỏi huyện Toán lớp 8 năm học 2018 - 2019 do phòng GD&ĐT huyện Ninh Phước, tỉnh Ninh Thuận tổ chức. 1. Bài toán đầu tiên yêu cầu chúng ta tìm giá trị của x sao cho biểu thức A = (x - 1)(x + 2)(x + 3)(x + 6) đạt giá trị nhỏ nhất. Để giải bài toán này, chúng ta cần áp dụng kiến thức về đạo hàm và điểm cực tiểu của hàm số. 2. Bài toán tiếp theo đưa ra hình bình hành ABCD với DC = 2AD, I là trung điểm của cạnh CD, HI vuông góc với AB tại H. Gọi E là giao điểm của AI và DH. Chúng ta cần chứng minh một số quy luật trong tam giác và hình học để giải quyết bài toán này. 3. Bài toán cuối cùng liên quan đến tam giác vuông ABC tại A, với AD là phân giác và BD = 14√3, CD = 3√17. Chúng ta cần tính độ dài các cạnh góc vuông của tam giác. Đây là bài toán yêu cầu chúng ta áp dụng kiến thức về phân giác trong tam giác và tính chất của tam giác vuông. Qua các bài toán trên, chúng ta sẽ học được nhiều kiến thức và kỹ năng mới trong môn Toán. Chúc quý thầy cô và các em học sinh có kỳ thi học sinh giỏi thành công!

Nguồn: sytu.vn

Đọc Sách

Đề giao lưu HSG Toán 8 năm 2023 - 2024 phòng GDĐT Quảng Xương - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Quảng Xương, tỉnh Thanh Hoá; kỳ thi được diễn ra vào ngày 27 tháng 01 năm 2024. Trích dẫn Đề giao lưu HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT Quảng Xương – Thanh Hoá : + Chọn ngẫu nhiên hai số nguyên dương nhỏ hơn 13. Tính xác suất để hai số được chọn là hai số nguyên tố trong đó có một số chẵn và một số lẻ. + Cho a là số nguyên dương và b là ước nguyên dương của 2a2. Chứng minh rằng: a2 + b không là số chính phương. + Cho tam giác ABC vuông cân tại A. Trên cạnh BC lấy điểm M bất kì. Kẻ ME vuông góc với AB tại E, MF vuông góc với AC tại F. Qua B kẻ đường thẳng (d1) song song với AC, qua C kẻ đường thẳng (d2) song song với AB. Gọi D là giao điểm của (d1) và (d2). 1. Chứng minh: tứ giác AEMF là hình chữ nhật và tổng EM/AC + FM/AB không phụ thuộc vào vị trí điểm M. 2. Gọi O là giao điểm của AM và EF, I là giao điểm của DE với BF. Chứng minh DE vuông góc với BF tại I và OI = OM. 3. Kí hiệu S1 là diện tích tam giác BEM; S2 là diện tích tam giác CFM. Xác định vị trí điểm M để S1, S2 lớn nhất.
Đề khảo sát HSG Toán 8 vòng 2 năm 2023 - 2024 phòng GDĐT Vũ Thư - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chất lượng học sinh giỏi môn Toán 8 cấp huyện vòng 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Vũ Thư, tỉnh Thái Bình; kỳ thi được diễn ra vào ngày 30 tháng 12 năm 2023. Trích dẫn Đề khảo sát HSG Toán 8 vòng 2 năm 2023 – 2024 phòng GD&ĐT Vũ Thư – Thái Bình : + Đa thức f(x) chia cho (x + 1) dư 2, chia cho (x – 2) dư 5, chia cho (x + 1)(x – 2) thì thương là 5x – 1 và còn dư. Tính f(4). + Cho tam giác ABC vuông tại A, kẻ phân giác trong AD (D thuộc BC), gọi M, N lần lượt là hình chiếu của D trên AB và AC. BN cắt DM tại E, CM cắt DN tại F, gọi K là giao điểm của BN và CM. a/ Tứ giác AMDN là hình gì? Vì sao? b/ Chứng minh: AB AC. c/ Chứng minh: AK vuông góc BC. + Cho tam giác ABC có AB + AC = 2BC. Gọi I là giao điểm ba đường phân giác trong, G là trọng tâm của ABC (I khác G). Chứng minh rằng IG // BC.
Đề HSG Toán 8 vòng 2 năm 2023 - 2024 trường THCS Trần Mai Ninh - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chọn đội tuyển học sinh giỏi môn Toán 8 vòng 2 năm học 2023 – 2024 trường THCS Trần Mai Ninh, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 09 tháng 12 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề HSG Toán 8 vòng 2 năm 2023 – 2024 trường THCS Trần Mai Ninh – Thanh Hóa : + Với a, b là các số nguyên. Chứng minh rằng nếu 2 2 4a 3ab 11b chia hết cho 5 thì 4 4 a b chia hết cho 5. Tìm phần dư của phép chia đa thức P x cho (x 1 2). Biết rằng đa thức P x chia cho (x − 1) dư 7 và chia cho (x + 2) dư 1. + Cho hình vuông ABCD. Vẽ tam giác AEB đều nằm trong hình vuông. Đường thẳng AE cắt BD ở F, DE cắt FC ở K. Chứng minh rằng: a) Tam giác DFE cân. b) K là trung điểm của CF. + Cho tam giác IHK cân ở I đường cao IM. Trên tia đối của HM vẽ N sao cho H là trung điểm của MN. Vẽ MP vuông góc với IH. Gọi Q là trung điểm của IP. Chứng minh rằng: NP vuông góc với QM.
Đề HSG Toán 8 vòng 1 năm 2023 - 2024 trường THCS Trần Mai Ninh - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chọn đội tuyển học sinh giỏi môn Toán 8 vòng 1 năm học 2023 – 2024 trường THCS Trần Mai Ninh, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 02 tháng 12 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề HSG Toán 8 vòng 1 năm 2023 – 2024 trường THCS Trần Mai Ninh – Thanh Hóa : + Tìm số tự nhiên n để B = n3 – n2 – 7n + 10 là số nguyên tố. Tìm n nguyên để C = n4 + 2n3 + 2n2 + n +7 là số chính phương. + Cho tam giác ABC vuông tại A, O là trung điểm của BC. Vẽ tia Bx vuông góc với BC (Bx cùng phía với điểm A đối với đường thẳng BC). Qua A vẽ đường thẳng vuông góc với AO cắt Bx ở M. Đường thẳng qua O và song song với AB cắt AM ở D, AC ở F. Đường thẳng MO cắt AB ở E. a) Chứng minh rằng: EF = AO. b) BD cắt CM ở I. Chứng minh rằng: Ba điểm E, I, F thẳng hàng. + Cho tam giác MNP có MN = 5cm, MP = 6cm, NP = 7cm. Gọi I là giao điểm của ba đường phân giác, G là trọng tâm của tam giác MNP. Chứng minh rằng: IG // MP.