Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hệ thức lượng trong tam giác vuông ôn thi vào lớp 10

Tài liệu gồm 17 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề hệ thức lượng trong tam giác vuông, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. Hệ thức về cạnh và đường cao Khi giải các bài toán liên quan đến cạnh và đường cao trong tam giác vuông, ngoài việc nắm vững các kiến thức về định lý Talet, về các trường hợp đồng dạng của tam giác, cần phải nắm vững các kiến thức sau: Tam giác ABC vuông tại A, đường cao AH. Chú ý: Diện tích tam giác vuông: 1 2 S ab. Tỉ số lượng giác của góc nhọn 1. Các tỉ số lượng giác của góc nhọn (hình) được định nghĩa như sau: sin cos tan cot AB AC AB AC BC BC AC AB. + Nếu là một góc nhọn thì 0 sin 1 0 cos 1 tan 0 cot 0. 2. Với hai góc mà 0 90 ta có: sin cos cos sin tan cot cot tan. Nếu hai góc nhọn và có sin sin hoặc cos cos thì 3 2 2 sin cos 1 cot 1 tg g. 4. Với một số góc đặc biệt ta có: 0 0 0 0 1 2 sin 30 cos 60 sin 45 cos 45 2 2 0 0 0 0 3 1 cos 30 sin 60 cot60 tan 30 2 3 0 0 0 0 tan 45 cot 45 1 cot 30 tan 60 3. Hệ thức về cạnh và góc trong tam giác vuông 1. Trong một tam giác vuông, mỗi cạnh góc vuông bằng: a) Cạnh huyền nhân với sin góc đối hay nhân với cosin góc kề. b) Cạnh góc vuông kia nhân với tan của góc đối hay nhân với cot của góc kề. 2. Giải tam giác vuông là tìm tất cả các cạnh và các góc chưa biết của tam giác vuông đó.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phương trình đại số ôn thi vào
Nội dung Chuyên đề phương trình đại số ôn thi vào Bản PDF - Nội dung bài viết Chương trình ôn thi vào lớp 10 môn Toán - Phương trình đại số Chương trình ôn thi vào lớp 10 môn Toán - Phương trình đại số Tài liệu này bao gồm 24 trang, hướng dẫn cụ thể các phương pháp giải và tuyển chọn các bài tập chuyên đề về phương trình đại số. Mỗi bài tập được đính kèm đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập hiệu quả cho kỳ thi tuyển sinh vào lớp 10 môn Toán. Các bài toán trong tài liệu được lựa chọn từ các nguồn uy tín, đảm bảo mang lại trải nghiệm học tập thú vị và bổ ích cho người đọc.
Chuyên đề giải toán bằng cách lập phương trình hệ phương trình ôn thi vào
Nội dung Chuyên đề giải toán bằng cách lập phương trình hệ phương trình ôn thi vào Bản PDF - Nội dung bài viết Chuyên đề giải toán bằng cách lập phương trình hệ phương trình - Sách ôn thi vào lớp 10 môn Toán Chuyên đề giải toán bằng cách lập phương trình hệ phương trình - Sách ôn thi vào lớp 10 môn Toán Sách này bao gồm 20 trang, cung cấp hướng dẫn chi tiết về phương pháp giải và chứa các bài tập chuyên đề giải toán bằng cách lập phương trình - hệ phương trình. Tất cả các câu hỏi đều có đáp án và lời giải chi tiết, giúp cho học sinh lớp 9 có thể ôn tập một cách hiệu quả để chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán. Những bài toán được trích từ các nguồn đáng tin cậy, đảm bảo độ khó và đa dạng cho học sinh.
Chuyên đề hệ phương trình bậc nhất hai ẩn ôn thi vào
Nội dung Chuyên đề hệ phương trình bậc nhất hai ẩn ôn thi vào Bản PDF - Nội dung bài viết Tài liệu ôn thi vào lớp 10 môn Toán - Hệ phương trình bậc nhất hai ẩn Tài liệu ôn thi vào lớp 10 môn Toán - Hệ phương trình bậc nhất hai ẩn Tài liệu chuyên đề này bao gồm 09 trang, được thiết kế dành cho học sinh lớp 9 chuẩn bị cho kì thi tuyển sinh vào lớp 10. Nội dung tài liệu tập trung vào phương pháp giải và tuyển chọn các bài tập chuyên đề hệ phương trình bậc nhất hai ẩn, kèm theo đáp án và lời giải chi tiết. Các bài tập được lựa chọn từ các nguồn đáng tin cậy, giúp học sinh hiểu rõ về kiến thức và rèn luyện kỹ năng giải bài toán hiệu quả.
Chuyên đề hàm số bậc nhất và hàm số bậc hai ôn thi vào
Nội dung Chuyên đề hàm số bậc nhất và hàm số bậc hai ôn thi vào Bản PDF - Nội dung bài viết Một tài liệu hữu ích cho học sinh lớp 9 ôn tập hàm số bậc nhất và hàm số bậc hai Một tài liệu hữu ích cho học sinh lớp 9 ôn tập hàm số bậc nhất và hàm số bậc hai Tài liệu này có tổng cộng 31 trang, cung cấp hướng dẫn chi tiết về phương pháp giải và lựa chọn các bài tập chuyên đề về hàm số bậc nhất và hàm số bậc hai. Nội dung của tài liệu bao gồm các bài tập được chọn lọc từ các đề thi tuyển sinh vào lớp 10 môn Toán, kèm theo đáp án và lời giải chi tiết. Đây sẽ là nguồn tư liệu hữu ích giúp học sinh ôn tập và chuẩn bị tốt cho kỳ thi sắp tới.