Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Thừa Thiên Huế

Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Thừa Thiên Huế Bản PDF - Nội dung bài viết Đề thi tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GD ĐT Thừa Thiên Huế Đề thi tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GD ĐT Thừa Thiên Huế Sytu xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 - 2023 sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế. Kỳ thi diễn ra vào thứ Năm ngày 09 tháng 06 năm 2022, đề thi bao gồm đáp án và lời giải chi tiết. Trích đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GD&ĐT Thừa Thiên Huế: 1. Hưởng ứng chiến dịch tình nguyện “Mùa hè xanh”, hai tổ thanh niên A và B tham gia sửa đoạn đường. Khi làm cùng nhau, họ hoàn thành việc trong 8 giờ. Nếu làm riêng, thời gian hoàn thành của tổ A ít hơn tổ B 12 giờ. Hỏi mỗi tổ sửa đoạn đường đó trong bao lâu khi làm riêng? 2. Cho tam giác ABC có ba góc nhọn, AB < AC và nội tiếp đường tròn (O). Gọi BE, CF lần lượt là các đường cao và H là trực tâm của tam giác ABC. a) Chứng minh AEHF là tứ giác nội tiếp. b) Đường tròn ngoại tiếp tứ giác AEHF cắt đường tròn (O) tại điểm I. Chứng minh hai tam giác IBC và IFE đồng dạng. c) Hai đường thẳng BC và EF cắt nhau tại K. Chứng minh A, I, K thẳng hàng. 3. Nhấn chìm hoàn toàn viên bi sắt vào cốc thủy tinh hình trụ, nước trong cốc dâng lên 2cm mà không tràn ra ngoài cốc. Biết đường kính đáy cốc là 6cm. Tính thể tích của viên bi.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên Toán và chuyên Tin học) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thái Nguyên; kỳ thi được diễn ra vào 08/06/2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Thái Nguyên : + Chứng minh rằng 2025n + n2 + 2024n + 5 không phải là số chính phương với mọi số tự nhiên n. + Cho tập hợp S gồm có 18 số tự nhiên khác nhau bất kỳ. a. Lấy ra 5 phần tử bất kỳ của tập hợp S. Chứng minh rằng trong 5 phần tử lấy ra đó luôn tồn tại 3 phần tử có tổng chia hết cho 3. b. Chứng minh rằng luôn tồn tại 9 phần tử của tập hợp S có tổng chia hết cho 9. + Cho tam giác ABC vuông tại A có đường cao AH. Trên đoạn thẳng AB lấy điểm K sao cho AB = 4AK. Trên tia đối của tia HA lấy điểm I sao cho HI = 1/4.AH. Kẻ KP vuông góc với đường thẳng AH (P thuộc AH). Chứng minh rằng: a. AH = PI. b. Tam giác IKC vuông tại I.
Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 - 2024 sở GDĐT Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chung) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Bình; kỳ thi được diễn ra vào ngày 07 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 – 2024 sở GD&ĐT Quảng Bình : + Cho phương trình x2 + 3x + m – 3 = 0 (m là tham số). a. Tìm tất cả các giá trị của m để phương trình có hai nghiệm. b. Trong trường hợp phương trình có hai nghiệm x1, x2, tìm tất cả các giá trị của m để x1, x2 thỏa mãn hệ thức 2x1x2 – (x1 + x2) = 2. + Cho nửa đường tròn tâm O đường kính AB và điểm C thuộc nửa đường tròn đó (C khác A và B). Lấy điểm E thuộc cung AC (E khác A và C) sao cho AE < BC, gọi M là giao điểm của AC và BE. Kè MH vuông góc với AB tại H. 1. Chứng minh tứ giác BCMH nội tiếp. 2. Chứng minh ACE đồng dạng với HCM. 3. Gọi K là giao điểm của OE và HC. Chứng minh KE.KO = KC.KH. + Với x thuộc R, tìm giá trị nhỏ nhất của biểu thức P = 9×2 – 2|3x – 2| – 12x + 2028.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Cần Thơ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Cần Thơ; kỳ thi được diễn ra vào ngày 05 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Cần Thơ : + Một bình chứa nước có dạng hình nón và mực nước trong bình cách đỉnh 8 cm (minh họa như Hình 1). Khi đảo ngược bình lại thì phần không gian trống của bình có chiều cao 2 cm (minh họa như Hình 2). Tính chiều cao của bình. Hình 1 Hình 2. + Cho hình bình hành ABCD có CB CA. Gọi M là điểm bất kỳ trên tia đối của tia BA. Đường tròn ngoại tiếp tam giác ACD cắt đường thẳng MD tại điểm N (N khác D), đường tròn ngoại tiếp tam giác AMN cắt đường thẳng MC tại điểm K (K khác M). a) Chứng minh tứ giác ABKC nội tiếp. b) Gọi I là giao điểm của đường thẳng AN và đường thẳng BK. Chứng minh I luôn thuộc một đường thẳng cố định khi M thay đổi. + Cho bảng ô vuông có kích thước 4 4 như sau: Mỗi ô trong bảng này được viết một số nguyên dương sao cho 16 số trên bảng đôi một khác nhau và trong mỗi hàng, mỗi cột luôn tồn tại một số bằng tổng của ba số còn lại tương ứng trong hàng, trong cột đó. Gọi M là số lớn nhất trong bảng. Tìm giá trị nhỏ nhất của M.
Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GDĐT TP Hồ Chí Minh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 07 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT TP Hồ Chí Minh : + Cửa hàng A niêm yết giá một bông hồng là 15000 đồng. Nếu khách hàng mua nhiều hơn 10 bông thì từ bông thứ 11 trở đi, mỗi bông được giảm 10% trên giá niêm yết. Nếu mua nhiều hơn 20 bông thì từ bông thứ 21 trở đi, mỗi bông được giảm thêm 20% trên giá đã giảm. Nếu khách hàng mua 30 bông hồng tại cửa hàng A thì phải trả bao nhiêu tiền? Bạn Thảo đã mua một số bông hồng tại cửa hàng A với số tiền là 555 000 đồng. Hỏi bạn Thảo đã mua bao nhiêu bông hồng? + Chị Lan đun sôi nước bằng ấm điện. Biết rằng mối liên hệ giữa công suất hao phí P(W) của ấm điện và thời gian đun t (giây) được mô hình hóa bởi một hàm số bậc nhất có dạng P = at + b và có đồ thị như hình bên. a) Hãy xác định các hệ số a và b. b) Nếu đun nước với công suất hao phí là 105(W) thì thời gian đun là bao lâu? + Bạn Nam cần chuẩn bị một số hộp nước trái cây có lượng nước trong mỗi hộp là 1,2 lít. Biết rằng buổi tiệc sinh nhật có 14 người (đã bao gồm Nam). Nếu mỗi người trung bình uống 3 ly nước trái cây và lượng nước rót bằng 90% thể tích ly thì bạn Nam cần chuẩn bị ít nhất bao nhiêu hộp nước trái cây? Biết 1 lít = 1000 cm3.