Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio Lâm Hữu Minh

Nội dung Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio Lâm Hữu Minh Bản PDF - Nội dung bài viết Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio Lâm Hữu Minh Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio Lâm Hữu Minh Tài liệu "Kỹ thuật CASIO luyện thi THPT Quốc gia" do tác giả Lâm Hữu Minh biên soạn gồm 122 trang hướng dẫn sử dụng Casio để giải các dạng toán trong đề thi THPT Quốc gia. Kỹ thuật CASIO được áp dụng một cách sáng tạo và khác biệt so với cách dùng máy tính thông thường. Các phương pháp sử dụng máy tính Casio trong tài liệu này không chỉ giúp người học nhanh chóng và hiệu quả khi giải các bài toán mà còn phát triển sự linh hoạt, sáng tạo và tăng tốc độ xử lý vấn đề. Kỹ thuật CASIO hướng đến mục tiêu luyện cho người học sự dẻo tay, nhanh nhạy khi sử dụng máy tính Casio để giải toán. Đồng thời, tài liệu cũng cung cấp những phương pháp bấm máy hiệu quả, tránh những thao tác không cần thiết và giúp tối ưu hóa quá trình giải toán. Tuy đề thi ngày càng đòi hỏi tư duy và suy luận cao, nhưng việc học Kỹ thuật CASIO sẽ giúp người học vững chắc trong việc sử dụng máy tính Casio trong kỳ thi THPT Quốc gia. Việc thành thạo Kỹ thuật CASIO kết hợp với vốn kiến thức Toán học sẽ tạo nên sự tự tin và khả năng giải quyết vấn đề hiệu quả cho người học khi tham gia kỳ thi. Không chỉ giúp cải thiện kỹ năng sử dụng máy tính Casio mà còn khuyến khích sự sáng tạo và nghiên cứu trong việc giải các bài toán. Từ đó, người học có thể mở rộng và áp dụng Kỹ thuật CASIO vào các môn học khác.

Nguồn: sytu.vn

Đọc Sách

Tổng hợp lý thuyết Toán THPT - Nguyễn Trọng Đoàn
Tài liệu gồm 70 trang, được biên soạn bởi thầy giáo Nguyễn Trọng Đoàn, tổng hợp lý thuyết Toán THPT, giúp học sinh tra cứu khi học chương trình Toán 10, Toán 11, Toán 12 và ôn thi THPT Quốc gia môn Toán. Mục lục tài liệu tổng hợp lý thuyết Toán THPT – Nguyễn Trọng Đoàn: I. LÍ THUYẾT LỚP 10 1. Đại số 10. Chương 1. Mệnh đề – tập hợp. Chương 2. Hàm số bậc nhất và hàm số bậc hai. Chương 3. Phương trình và hệ phương trình. Chương 4. Bất đẳng thức. Chương 6. Góc lượng giác và công thức lượng giác. 2. Hình học 10. Chương 1. Vec tơ. Chương 2. Tích vô hướng hai vec tơ và ứng dụng. Chương 3. Phương pháp tọa độ trong mặt phẳng. II. LÍ THUYẾT LỚP 11 1. Đại số và Giải tích 11. Chương 1. Hàm số lượng giác và phương trình lượng giác. Chương 2. Tổ hợp – xác suất. Chương 3. Dãy số – cấp số cộng – cấp số nhân. Chương 4. Giới hạn. Chương 5. Đạo hàm. 2. Hình học 11. Chương 1. Phép biến hình. Chương 2. Quan hệ song song trong không gian. Chương 3. Quan hệ vuông góc trong không gian. III. LÍ THUYẾT LỚP 12 1. Giải tích 12. Chương 1. Ứng dụng đạo hàm và khảo sát hàm số. Chương 2. Hàm số lũy thừa – mũ – logarit. Chương 3. Nguyên hàm – tích phân. Chương 4. Số phức. 2. Hình học 12. Chương 1. Khối đa diện và thể tích khối đa diện. Chương 2. Mặt trụ – mặt nón – mặt cầu. Chương 3. Phương pháp tọa độ trong không gian.
15 dạng toán VD - VDC ôn thi THPT môn Toán
Tài liệu gồm 777 trang, tuyển chọn các câu hỏi và bài tập trắc nghiệm 15 dạng toán vận dụng – vận dụng cao (VD – VDC) ôn thi THPT môn Toán; các câu hỏi và bài tập được sáng tác, phát triển dựa trên đề minh họa tốt nghiệp THPT môn Toán của Bộ Giáo dục và Đào tạo, có đáp án và lời giải chi tiết. Mục lục tài liệu 15 dạng toán VD – VDC ôn thi THPT môn Toán: + Dạng toán 1. Tính xác suất bằng định nghĩa. + Dạng toán 2. Tính khoảng cách giữa hai đường thẳng chéo nhau. + Dạng toán 3. Tích phân. + Dạng toán 4. Tìm tham số để hàm số bậc nhất / bậc nhất đơn điệu. + Dạng toán 5. Khối nón. + Dạng toán 6. Lôgarit. + Dạng toán 7. Giá trị lớn nhất và giá trị nhỏ nhất hàm số trị tuyệt đối chứa tham số. + Dạng toán 8. Phương trình lôgarit chứa tham số. + Dạng toán 9. Nguyên hàm từng phần. + Dạng toán 10. Bài toán liên quan đến giao điểm của hai đồ thị. + Dạng toán 11. Tìm cực trị hàm hợp f(u(x)) khi biết đồ thị hàm số f(x) hoặc f'(x). + Dạng toán 12. Ứng dụng phương pháp hàm số để giải phương trình mũ – lôgarit. + Dạng toán 13. Tích phân liên quan đến hàm ẩn. + Dạng toán 14. Tính thể tích khối đa diện. + Dạng toán 15. Tính đơn điệu của hàm liên kết.
Tài liệu ôn thi THPT môn Toán giai đoạn 1 - Lê Văn Đoàn
Tài liệu gồm 83 trang, được biên soạn bởi nhóm Toán thầy Lê Văn Đoàn: Ths. Lê Văn Đoàn – Ths. Trương Huy Hoàng – Ths. Nguyễn Tiến Hà – Bùi Sỹ Khanh – Nguyễn Đức Nam – Đỗ Minh Tiến, tuyển chọn 481 bài tập trắc nghiệm (có đáp án) các chuyên đề: hàm số và các vấn đề liên quan, thể tích khối đa diện; giúp học sinh khối 12 ôn thi THPT môn Toán giai đoạn giữa học kỳ 1 (giai đoạn 1). Mục lục tài liệu ôn thi THPT môn Toán giai đoạn 1 – Lê Văn Đoàn: Chuyên đề 1 . HÀM SỐ VÀ CÁC VẤN ĐỀ LIÊN QUAN. + Bài toán 1. Đơn điệu, cực trị, giá trị lớn nhất – giá trị nhỏ nhất, tiệm cận và tương giao khi đề bài cho bảng biến thiên hoặc đồ thị f(x) hoặc f'(x) (Trang 1). + Bài toán 2. Đơn điệu, cực trị, giá trị lớn nhất – giá trị nhỏ nhất, tiệm cận và tương giao khi đề bài cho hàm số f(x) hoặc f'(x) cụ thể (Trang 11). + Bài toán 3. Bài toán chứa tham số (Trang 19). + Bài toán 4. Đơn điệu, cực trị, giá trị lớn nhất – giá trị nhỏ nhất, tiệm cận và tương giao của hàm hợp (Trang 41). + Bài toán 5. Nhận dạng đồ thị hàm số và biện luận nghiệm dựa vào bảng biến thiên hoặc đồ thị (Trang 53). + Bài toán 6. Tiếp tuyến của đồ thị hàm số (Trang 58). Chuyên đề 2 . THỂ TÍCH KHỐI ĐA DIỆN. + Bài toán 1. Thể tích khối chóp, khối lập phương, khối hộp chữ nhật, khối lăng trụ (Trang 60). + Bài toán 2. Bài toán cực trị thể tích (Trang 63). + Bài toán 3. Tỉ số thể tích (Trang 70). + Bài toán 4. Góc và khoảng cách trong không gian (Trang 74).
Các chuyên đề Giải tích ôn thi tốt nghiệp THPT - Lư Sĩ Pháp
Tài liệu gồm 118 trang, được biên soạn bởi thầy Lư Sĩ Pháp, tuyển chọn hệ thống bài tập trắc nghiệm Giải tích có đáp án, bám sát đề thi minh họa, đề thi tham khảo tốt nghiệp THPT của Bộ Giáo dục và Đào tạo; đây là tập 1 trong bộ sách “Toán ôn thi tốt nghiệp” của thầy Lư Sĩ Pháp. Nội dung của tài liệu bám sát chương trình của Bộ Giáo dục và Đào tạo quy định. Toán ôn thi tốt nghiệp (tập 1) gồm các chuyên đề về Giải tích: [ads] Chuyên đề 1. Khảo sát hàm số (trang 01 – trang 36). Chuyên đề 2. Lũy thừa – mũ – lôgarit (trang37 – trang 59). Chuyên đề 3. Nguyên hàm – tích phân (trang 60 – trang 83). Chuyên đề 4. Số phức (trang 84 – trang 99). Chuyên đề 5. Cấp số cộng – cấp số nhân (trang 100 – trang 104). Chuyên đề 6. Tổ hợp – xác suất (trang 105 – trang 114). Xem thêm : Các chuyên đề Hình học ôn thi tốt nghiệp THPT – Lư Sĩ Pháp