Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào chuyên môn Toán (chuyên) năm 2023 2024 sở GD ĐT Đồng Tháp

Nội dung Đề thi vào chuyên môn Toán (chuyên) năm 2023 2024 sở GD ĐT Đồng Tháp Bản PDF - Nội dung bài viết Đề thi vào lớp 10 chuyên môn Toán (chuyên) năm 2023 - 2024 Đề thi vào lớp 10 chuyên môn Toán (chuyên) năm 2023 - 2024 Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 chuyên môn Toán (chuyên) năm học 2023 - 2024 của sở Giáo dục và Đào tạo tỉnh Đồng Tháp. Đề thi sẽ diễn ra vào thứ Bảy, ngày 10 tháng 06 năm 2023. Trong đề thi, có ba bài toán khó đều đang chờ các bạn. Ví dụ, trong bài toán thứ nhất, bạn sẽ phải tính khoảng cách từ điểm N đến đoạn thẳng BC trên tờ giấy hình tam giác ABC vuông tại A. Đây là một bài toán đòi hỏi sự logic và kỹ năng tính toán chính xác. Bài toán thứ hai đề cập đến tam giác ABC nhọn và việc chứng minh các điểm trên đường thẳng AH và EF. Bạn sẽ phải chứng minh nội tiếp tứ giác AIJE và tính toán vị trí của các điểm trên đường thẳng BC. Đây là một bài toán phức tạp và đòi hỏi sự tư duy logic và khả năng suy luận tốt. Cuối cùng, bài toán thứ ba liên quan đến việc mua thẻ tại Phiên chợ hè Lotus. Bạn sẽ phải tính toán số cách mua thẻ giá 3000 đồng và 4000 đồng nếu có một số tiền nhất định. Đây là một bài toán áp dụng kiến thức toán học vào thực tế và yêu cầu khả năng áp dụng kiến thức vào vấn đề cụ thể. Như vậy, đề thi vào lớp 10 chuyên môn Toán (chuyên) năm 2023 - 2024 sở GD&ĐT Đồng Tháp sẽ là một thách thức lớn đối với các thí sinh. Hy vọng rằng các em sẽ rèn luyện và chuẩn bị kỹ lưỡng để đạt kết quả tốt nhất trong kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế (chuyên Tin)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Quốc học – TT Huế (chuyên Tin) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho parabol 2 (P): y = 2x^2 và đường thẳng (d): y = ax + b. a) Tìm điều kiện của b sao cho với mọi số thực a, parabol (P) luôn cắt đường thẳng (d) tại hai điểm phân biệt. b) Gọi A là giao điểm của (P) và (d) có hoành độ bằng 1, B là giao điểm của (d) và trục tung. [ads] Biết rằng tam giác OAB có diện tích bằng 2, tìm a và b. + Tìm tất cả các số nguyên x, y, z không âm thỏa mãn xyz + xy  + yz + zx + x + y + z = 2017. + Bên trong hình vuông cạnh bằng 1, lấy 9 điểm phân biệt tùy ý sao cho không có bất kỳ 3 điểm nào trong chúng thẳng hàng. Chứng minh rằng tồn tại 3 điểm trong số đó tạo thành một tam giác có diện tích không vượt quá 1/8.
Đề thi tuyển sinh lớp 10 THPT công lập năm học 2017 - 2018 môn Toán sở GD và ĐT Bến Tre
Đề thi tuyển sinh lớp 10 THPT công lập năm học 2017 – 2018 môn Toán sở GD và ĐT Bến Tre gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho phương trình x^2 – 2(m – 1)x – (2m + 1) = 0 (1) (m là tham số) a) Giải phương trình (1) với m = 2 b) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt với mọi m c) Tìm m để phương trình (1) luôn có hai nghiệm bằng nhau về giá trị tuyệt đối và trái dấu nhau [ads] + Trong mặt phẳng tọa độ Oxy cho parabol (P): y = – 2x^2 và đường thẳng (d): y = 2x – 4 a) Vẽ đồ thị của (P) và (d) trên cùng mặt phẳng tọa độ b) Bằng phương pháp đại số, hãy tìm tọa độ giao điểm của (P) và (d)
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường TH Cao Nguyên - Đắk Lắk
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường TH Cao Nguyên – Đắk Lắk gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn tâm O, từ A nằm ngoài đường tròn vẽ hai tiếp tuyến AB, AC (B, C là các tiếp điểm). Gọi E là giao điểm của OA và BC. a. Chứng minh tứ giác ABOC nội tiếp. b. Chứng minh BA.BE = AE.BO. c. Gọi I là trung điểm của BE, đường thẳng qua I và vuông góc với OI cắt tia AB và AC theo thứ tự tại D và F. Chứng minh góc IDO và góc BCO bằng nhau và tam giác DOF cân. + Cho tam giác ABC có hai đường phân giác trong BD và CE. Điểm M bất kì trên đoạn DE. Gọi H, K, L lần lượt là hình chiếu của M trên BC, CA, AB. Chứng minh rằng MK + ML = MH .
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Lạng Sơn
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Lạng Sơn gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho nửa đường tròn tâm O, đường kính AB. Dựng tiếp tuyến Ax (Ax và nửa đường tròn cùng thuộc nửa mặt phẳng bờ AB). C là một điểm nằm trên nửa đường tròn (C không trùng A và B), dựng tiếp tuyến Cy của nửa đường tròn (O) cắt Ax tại D. Kẻ CH vuông góc với AB (H thuộc AB), BD cắt (O) tại điểm thứ hai là K và cắt CH tại M. Gọi J là giao điểm của OD và AC. a) Chứng minh rằng tứ giác AKMH nội tiếp được một đường tròn. b) Chứng minh rằng tứ giác CKJM nội tiếp được một đường tròn (O1). c) Chứng minh DJ là tiếp tuyến của đường tròn (O1).