Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào chuyên môn Toán (chuyên) năm 2023 2024 sở GD ĐT Đồng Tháp

Nội dung Đề thi vào chuyên môn Toán (chuyên) năm 2023 2024 sở GD ĐT Đồng Tháp Bản PDF - Nội dung bài viết Đề thi vào lớp 10 chuyên môn Toán (chuyên) năm 2023 - 2024 Đề thi vào lớp 10 chuyên môn Toán (chuyên) năm 2023 - 2024 Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 chuyên môn Toán (chuyên) năm học 2023 - 2024 của sở Giáo dục và Đào tạo tỉnh Đồng Tháp. Đề thi sẽ diễn ra vào thứ Bảy, ngày 10 tháng 06 năm 2023. Trong đề thi, có ba bài toán khó đều đang chờ các bạn. Ví dụ, trong bài toán thứ nhất, bạn sẽ phải tính khoảng cách từ điểm N đến đoạn thẳng BC trên tờ giấy hình tam giác ABC vuông tại A. Đây là một bài toán đòi hỏi sự logic và kỹ năng tính toán chính xác. Bài toán thứ hai đề cập đến tam giác ABC nhọn và việc chứng minh các điểm trên đường thẳng AH và EF. Bạn sẽ phải chứng minh nội tiếp tứ giác AIJE và tính toán vị trí của các điểm trên đường thẳng BC. Đây là một bài toán phức tạp và đòi hỏi sự tư duy logic và khả năng suy luận tốt. Cuối cùng, bài toán thứ ba liên quan đến việc mua thẻ tại Phiên chợ hè Lotus. Bạn sẽ phải tính toán số cách mua thẻ giá 3000 đồng và 4000 đồng nếu có một số tiền nhất định. Đây là một bài toán áp dụng kiến thức toán học vào thực tế và yêu cầu khả năng áp dụng kiến thức vào vấn đề cụ thể. Như vậy, đề thi vào lớp 10 chuyên môn Toán (chuyên) năm 2023 - 2024 sở GD&ĐT Đồng Tháp sẽ là một thách thức lớn đối với các thí sinh. Hy vọng rằng các em sẽ rèn luyện và chuẩn bị kỹ lưỡng để đạt kết quả tốt nhất trong kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 trường chuyên Quốc học Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên Toán) năm học 2022 – 2023 trường THPT chuyên Quốc học Huế, tỉnh Thừa Thiên Huế; kỳ thi được diễn ra vào ngày 09 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 trường chuyên Quốc học Huế : + Cho đường tròn (O) và dây BC cố định không đi qua O. Điểm A thay đổi trên cung lớn BC sao cho ABC là tam giác nhọn và AB < AC. Gọi AD, BE, CF là các đường cao và H là trực tâm của tam giác ABC. Gọi K là giao điểm của hai đường thẳng BC và EF; I là giao điểm thứ hai của KA với (O); M là trung điểm BC; N là giao điểm thứ hai của AH và (O). Chứng minh: a) Tứ giác AIFE là tứ giác nội tiếp; b) Ba điểm M, H, I thẳng hàng; c) Tứ giác INMO là tứ giác nội tiếp; d) Đường thẳng N luôn đi qua một điểm cố định khi A thay đổi. + Tìm tất cả các số nguyên x, y thỏa mãn x3 – x2(y + 1) + x(7 + y) – 4 – y = 0. + Cho x, y, z là các số thực dương thỏa mãn xy + yz + zx = 3. Chứng minh?
Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2022 - 2023 sở GDKHCN Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (không chuyên) năm học 2022 – 2023 sở Giáo dục, Khoa học và Công nghệ tỉnh Bạc Liêu; kỳ thi được diễn ra vào sáng thứ Sáu ngày 10 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2022 – 2023 sở GDKHCN Bạc Liêu : + Cho parabol (P): y = x2 và đường thẳng (d): y = 3x – 2. Vẽ đồ thị (P) và tìm tọa độ giao điểm của (P) với đường thẳng (d) bằng phép tính. + Cho phương trình x2 – 5x + m + 2 = 0 (1) (m là tham số). a) Giải phương trình khi m = 2. b) Tìm điều kiện của m để phương trình (1) có hai nghiệm phân biệt. c) Gọi x1 và x2 là hai nghiệm phân biệt của phương trình (1). Tìm giá trị lớn nhất của biểu thức P. + Trên nửa đường tròn tâm O đường kính AB = 2R, lấy điểm C (C khác A và B), từ C kẻ CH vuông góc với AB (H thuộc AB). Gọi D là điểm bất kì trên đoạn CH (D khác C và H), đường thẳng AD cắt nửa đường tròn tại điểm thứ hai là E. a) Chứng minh tứ giác BHDE nội tiếp. b) Chứng minh AD.EC = CD.AC. c) Khi điểm C di động trên nửa đường tròn (C khác A, B và điểm chính giữa cung AB), xác định vị trí của điểm C sao cho chu vi tam giác COH đạt giá trị lớn nhất.
Đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Ninh Bình; kỳ thi được diễn ra vào sáng thứ Sáu ngày 10 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Ninh Bình : + Tìm tất cả các số nguyên dương a và các số nguyên tố p thỏa mãn a2 = 7p4 + 9. + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Gọi M, N lần lượt là trung điểm của các cạnh AB, AC. Đường thẳng MN cắt (O) tại các điểm P, Q (P thuộc cung nhỏ AB và Q thuộc cung nhỏ AC). Lấy điểm D trên cạnh BC (D khác B và D khác C). Đường tròn ngoại tiếp tam giác BDP cắt AB tại điểm I (I khác B). Đường thẳng DI cắt AC tại K. 1. Chứng minh rằng tứ giác AIPK nội tiếp. 2. Chứng minh rằng PK/PD = QB/QA. 3. Đường thẳng CP cắt đường tròn ngoại tiếp tam giác BDP tại G (G khác P). Đường thằng IG cắt đường thẳng BC tại điểm E. Chứng minh rằng khi điểm D di chuyển trên cạnh BC thì tỉ số CD/CE không đổi. + Cho bảng ô vuông 3 x 3 (gồm ba dòng và ba cột). Người ta ghi tất cả các số thuộc tập hợp {1; 2; 3; 4; 5; 6; 7; 8; 9} vào các ô vuông của bảng, mỗi ô vuông ghi một số, sao cho tổng các số trong mỗi bảng vuông con cỡ 2 x 2 đều bằng nhau. 1. Hãy chỉ ra một cách ghi các số vào bảng thỏa mãn yêu cầu bài toán. 2. Trong tất cả các cách ghi các số vào bảng thỏa mãn yêu cầu bài toán, tìm giá trị lớn nhất của tổng các số trong mỗi bảng vuông con cỡ 2 x 2.
Đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Bình Thuận
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT công lập môn Toán (lớp 10 chuyên Toán – hệ số 2) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Thuận; kỳ thi được diễn ra vào thứ Sáu ngày 10 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Bình Thuận : + Hai bạn An và Bình đang so về số lượng những viên bi mà hai bạn hiện có. An nói với Bình rằng: “Nếu bạn cho tôi một số viên bi từ túi của bạn thì tôi sẽ có số viên bi gấp 6 lần số viên bi của bạn. Còn nếu tôi cho bạn số viên bi như thế, số viên bi của bạn sẽ bằng 1/3 số viên bi của tôi”. Hỏi số viên bi ít nhất mà bạn An có thể có là bao nhiêu? + Cho đường tròn tâm O nội tiếp tam giác ABC, tiếp xúc với các cạnh AB, AC lần lượt tại D và E. Gọi I là tâm đường tròn nội tiếp tam giác ADE. a) Chứng minh A, I, O thẳng hàng và I thuộc đường tròn (O). b) Các phân giác trong của các góc B và C cắt đường thẳng DE lần lượt tại M và N. Chứng minh tứ giác BCMN nội tiếp và tam giác BMC vuông. + Người ta viết các số nguyên 1, 2, 3, 4, 5, 6, 7, 8 lên các đỉnh của một bát giác lồi sao cho tổng các số ở mỗi ba đỉnh liên tiếp không nhỏ hơn k với k nguyên dương. Tìm giá trị lớn nhất của k.