Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương trình đại số Trịnh Bình

Nội dung Chuyên đề phương trình đại số Trịnh Bình Bản PDF - Nội dung bài viết Chuyên đề phương trình đại số Trịnh Bình Chuyên đề phương trình đại số Trịnh Bình Tài liệu chuyên đề phương trình đại số do tác giả Trịnh Bình tổng hợp gồm 56 trang, hướng dẫn phương pháp giải các bài toán phương trình đại số. Đây là tài liệu hữu ích giúp học sinh hiểu rõ hơn về chương trình Đại số lớp 9 và ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. CHỦ ĐỀ 1. PHƯƠNG TRÌNH ĐA THỨC BẬC CAO: Trong chuyên đề này, chúng ta sẽ tìm hiểu cách giải các phương trình đa thức bậc cao. Đối với phương trình bậc 3, chúng ta thường tìm một nghiệm đầu tiên, sau đó phân tích phương trình thành nhân tử để chuyển về giải phương trình bậc 2. Còn đối với phương trình bậc 4, chúng ta thường nhẩm một nghiệm và phân tích phương trình thành tích của đa thức bậc 3 và đa thức bậc nhất. CHỦ ĐỀ 2. PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU THỨC: Trong phần này, chúng ta sẽ học cách giải các phương trình chứa ẩn trong mẫu thức. Bước đầu tiên là tìm điều kiện xác định của phương trình, sau đó quy đồng mẫu hai vế và khử mẫu để giải phương trình. CHỦ ĐỀ 3. PHƯƠNG TRÌNH CHỨA ẨN TRONG DẤU GIÁ TRỊ TUYỆT ĐỐI: Trong phần này, chúng ta sẽ tìm hiểu cách giải phương trình có chứa ẩn trong dấu giá trị tuyệt đối. Để bỏ dấu giá trị tuyệt đối, chúng ta cần xét các giá trị làm biểu thức âm hoặc không âm. Chúng ta cần hiểu rõ các phương pháp giải phương trình đại số để có thể áp dụng linh hoạt vào việc giải các bài toán. Hãy cùng học tập và rèn luyện kỹ năng giải toán một cách chính xác và hiệu quả!

Nguồn: sytu.vn

Đọc Sách

Các bài toán sử dụng nguyên lý bất biến trong giải toán
Nội dung Các bài toán sử dụng nguyên lý bất biến trong giải toán Bản PDF - Nội dung bài viết Các ứng dụng của nguyên lý bất biến trong giải toán Các ứng dụng của nguyên lý bất biến trong giải toán Bản tài liệu này bao gồm 16 trang và được trích từ cuốn sách nổi tiếng về việc áp dụng nguyên lý bất biến trong giải toán. Nguyên lý bất biến là một trong những công cụ quan trọng để giải quyết các bài toán phức tạp trong toán học. Bằng cách áp dụng nguyên lý này, người ta có thể tạo ra những phương pháp giải quyết hiệu quả, tiết kiệm thời gian và nâng cao khả năng suy luận của mình.
Các bài toán sử dụng nguyên lý cực hạn
Nội dung Các bài toán sử dụng nguyên lý cực hạn Bản PDF - Nội dung bài viết Các ứng dụng của nguyên lý cực hạn trong giải bài toán Các ứng dụng của nguyên lý cực hạn trong giải bài toán Tài liệu bao gồm 20 trang và được trích dẫn từ một cuốn sách nổi tiếng về nguyên lý cực hạn. Trong cuốn sách, nguyên lý cực hạn được áp dụng để giải quyết các bài toán phức tạp trong đời sống và công việc hàng ngày. Việc áp dụng nguyên lý cực hạn trong giải quyết bài toán giúp tối ưu hóa kết quả và đưa ra những giải pháp hiệu quả nhất.
Các bài toán về nguyên lý Dirichlet trong số học
Nội dung Các bài toán về nguyên lý Dirichlet trong số học Bản PDF - Nội dung bài viết Các bài toán về nguyên lý Dirichlet trong số học Các bài toán về nguyên lý Dirichlet trong số học Được trích đoạn từ cuốn sách "Các bài toán về nguyên lý Dirichlet trong số học", tài liệu này bao gồm 26 trang các bài toán liên quan đến nguyên lý Dirichlet trong số học. Những bài toán này thường liên quan đến việc tìm kiếm nguyên hàm của một hàm số với điều kiện ban đầu cho trước, và có ứng dụng rất rộng rãi trong lĩnh vực toán học, khoa học máy tính và các ngành liên quan khác. Cuốn sách này cung cấp cái nhìn tổng quan về nguyên lý Dirichlet và giúp độc giả hiểu rõ hơn về cách áp dụng nguyên lý này vào các bài toán cụ thể.
Các bài toán về phần nguyên trong số học
Nội dung Các bài toán về phần nguyên trong số học Bản PDF - Nội dung bài viết Các bài toán về phần nguyên trong số học Các bài toán về phần nguyên trong số học Tài liệu này bao gồm 33 trang và được trích đoạn từ cuốn sách về các bài toán liên quan đến phần nguyên trong số học. Những vấn đề này thường liên quan đến việc làm tròn số, phân tích số nguyên, và tính toán các phép toán cơ bản trên số nguyên. Qua việc nghiên cứu tài liệu này, người đọc sẽ hiểu rõ hơn về cách thức giải quyết các vấn đề liên quan đến phần nguyên và áp dụng chúng vào thực tế.